土木与交通工程 |
|
|
|
|
基于PSO-SVR的土压平衡盾构施工进度优化 |
秦元1( ),余宏淦2,陶建峰2,*( ),孙浩2,刘成良2 |
1. 上海隧道工程有限公司,上海 200232 2. 上海交通大学 机械与动力工程学院,上海 200240 |
|
Advance rate optimization of earth pressure balance shield based on PSO-SVR |
Yuan QIN1( ),Hong-gan YU2,Jian-feng TAO2,*( ),Hao SUN2,Cheng-liang LIU2 |
1. Shanghai Tunnel Engineering Co. Ltd, Shanghai 200232, China 2. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China |
引用本文:
秦元,余宏淦,陶建峰,孙浩,刘成良. 基于PSO-SVR的土压平衡盾构施工进度优化[J]. 浙江大学学报(工学版), 2022, 56(8): 1523-1532.
Yuan QIN,Hong-gan YU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. Advance rate optimization of earth pressure balance shield based on PSO-SVR. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1523-1532.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.006
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1523
|
1 |
LIU Q, HUANG X, GONG Q, et al Application and development of hard rock TBM and its prospect in China[J]. Tunnelling and Underground Space Technology, 2016, 57: 33- 46
doi: 10.1016/j.tust.2016.01.034
|
2 |
YU H, JAO J, HUANG S, et al A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead[J]. Automation in Construction, 2021, 124: 103603
doi: 10.1016/j.autcon.2021.103603
|
3 |
王厚同. 基于机器学习的TBM性能预测方法 [D]. 济南: 山东大学, 2019. WANG Hou-tong. Method for predicting TBM performance based on machine learning [D]. Jinan: Shandong University, 2019.
|
4 |
ROSTAMI J Performance prediction of hard rock tunnel boring machines (TBMs) in difficult ground[J]. Tunnelling and Underground Space Technology, 2016, 57: 173- 182
doi: 10.1016/j.tust.2016.01.009
|
5 |
ZHOU J, BEJARBANEH B Y, ARMAGHANI D J, et al Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques[J]. Bulletin of Engineering Geology and the Environment, 2019, 79 (2): 1- 16
|
6 |
JING L, LI J, ZHANG N, et al A TBM advance rate prediction method considering the effects of operating factors[J]. Tunnelling and Underground Space Technology, 2021, 107: 103620
doi: 10.1016/j.tust.2020.103620
|
7 |
段晓晨, 张小平 TBM掘进工时利用率动态优化系统研究[J]. 铁道学报, 2000, (6): 104- 108 DUAN Xiao-chen, ZHANG Xiao-ping Research on dynamic optimized system of increasing constantly the TBM boring operation rate[J]. Journal of the China Railway Society, 2000, (6): 104- 108
doi: 10.3321/j.issn:1001-8360.2000.06.023
|
8 |
龚秋明, 卢建炜, 魏军政, 等 基于岩体分级系统(RMR)评估预测TBM利用率研究[J]. 施工技术, 2018, 47 (5): 92- 98,127 GONG Qiu-ming, LU Jian-wei, WEI Jun-zheng, et al Study on estimation and prediction of TBM utilization rate using rock mass rating (RMR)[J]. Construction Technology, 2018, 47 (5): 92- 98,127
|
9 |
ALBER M, RÜHL S. Tunnel support by fully grouted rock bolts for fast TBM advance [C]// Proceedings of 31st ITA-AITES World Tunnel Congress. London: Taylor & Francis Group, 2005: 743-748.
|
10 |
BRULAND A. Hard rock tunnel boring [D]. Trondheim: Norwegian University of Science and Technology, 2000.
|
11 |
FARROKH E. Study of utilization factor and advance rate of hard rock TBMs [D]. Stetter Klich: Pennsylvania State University, 2012.
|
12 |
SIMOES M G, KIM T. Fuzzy modeling approaches for the prediction of machine utilization in hard rock tunnel boring machines [C]// Conference Record of the 2006 IEEE Industry Applications Conference 41st IAS Annual Meeting. Tampa: IEEE, 2006: 947-954.
|
13 |
FROUGH O, TORABI S R An application of rock engineering systems for estimating TBM downtimes[J]. Engineering Geology, 2013, 157: 112- 123
doi: 10.1016/j.enggeo.2013.02.003
|
14 |
NOORI A M, MIKAEIL R, MOKHTARIAN M, et al Feasibility of intelligent models for prediction of utilization factor of TBM[J]. Geotechnical and Geological Engineering, 2020, 38 (3): 3125- 3143
doi: 10.1007/s10706-020-01213-9
|
15 |
王超, 龚国芳, 杨华勇, 等 NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报:工学版, 2018, 52 (3): 479- 486 WANG Chao, GONG Guo-fang, YANG Hua-yong, et al NSVR based predictive analysis of cutterhead torque for hard rock TBM[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 479- 486
|
16 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995, 4: 1942-1948.
|
17 |
姜长泓, 张永恒, 王盛慧 基于改进粒子群优化算法的PID控制器参数优化[J]. 应用科学学报, 2017, 35 (5): 667- 674 JIANG Chang-hong, ZHANG Yong-heng, WANG Sheng-hui PID parameter optimization based on improved particle swarm optimization algorithm[J]. Journal of Applied Sciences, 2017, 35 (5): 667- 674
doi: 10.3969/j.issn.0255-8297.2017.05.012
|
18 |
PARSOPOULOS K E, VRAHATIS M N Particle swarm optimization method for constrained optimization problems[J]. Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies, 2002, 76 (1): 214- 220
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|