土木工程、水利工程、交通工程 |
|
|
|
|
任意多边形网格剖分的潜水层水流模型 |
高玉龙1,2( ),刘志杰3,韩玉2,易树平2,*( ) |
1. 哈尔滨工业大学 环境学院,黑龙江 哈尔滨 150090 2. 南方科技大学 环境科学与工程学院,广东 深圳 518055 3. 深圳市南科环保科技有限公司,广东 深圳 518055 |
|
Numerical model for groundwater flow simulation in unconfined aquifer with arbitrary polygon grids |
Yu-long GAO1,2( ),Zhi-jie LIU3,Yu HAN2,Shu-ping YI2,*( ) |
1. School of Environment, Harbin Institute of Technology, Harbin 150090, China 2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3. Shenzhen Sustech Environmental Incorporation, Shenzhen 518055, China |
引用本文:
高玉龙,刘志杰,韩玉,易树平. 任意多边形网格剖分的潜水层水流模型[J]. 浙江大学学报(工学版), 2022, 56(7): 1385-1393.
Yu-long GAO,Zhi-jie LIU,Yu HAN,Shu-ping YI. Numerical model for groundwater flow simulation in unconfined aquifer with arbitrary polygon grids. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1385-1393.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.014
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1385
|
1 |
任杰, 程嘉强, 杨杰, 等. 潜流交换温度示踪方法研究进展[J]. 水科学进展. 2018, 29(4): 597-606. REN Jie, CHENG Jia-qiang, YANG Jie, et al. Advances in temperature tracer method of hyporheic exchange [J]. Advances in Water Science, 2018, 29(4): 597-606.
|
2 |
陈飞, 徐翔宇, 羊艳, 等 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展, 2020, 31 (6): 811- 819 CHEN Fei, XU Xiang-yu, YANG Yan, et al Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science, 2020, 31 (6): 811- 819
|
3 |
MCDONALD M G, HARBAUGH A W. A modular three-dimensional finite-difference ground-water flow model [M]. Reston: US Geological Survey, 1988.
|
4 |
HARBAUGH A W. MODFLOW-2005, the US geological survey modular ground-water model: the ground-water flow process[M]. Reston: US Geological Survey, 2005.
|
5 |
MA L, HE C, BIAN H, et al MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges[J]. Ecological Engineering, 2016, 96: 137- 149
doi: 10.1016/j.ecoleng.2016.01.008
|
6 |
TREFRY M G, MUFFELS C FEFLOW: a finite-element ground water flow and transport modeling tool[J]. Ground Water, 2010, 45 (5): 525- 528
|
7 |
AAVATSMARK I An introduction to multipoint flux approximations for quadrilateral grids[J]. Computational Geosciences, 2002, 6 (3): 405- 432
|
8 |
AAVATSMARK I, EIGESTAD G T, KLAUSEN R A. Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions [M]. New York: Springer, 2006: 1-21.
|
9 |
AAVATSMARK I, BARKVE T, MANNSETH T Control-volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs[J]. SPE Journal, 1998, 3 (2): 146- 154
doi: 10.2118/38000-PA
|
10 |
AAVATSMARK I, BARKVE T, BØE Ø, et al Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media[J]. Journal of Computational Physics, 1996, 127 (1): 2- 14
doi: 10.1006/jcph.1996.0154
|
11 |
EDWARDS M G Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids[J]. Computational Geosciences, 2002, 6 (3/4): 433- 452
doi: 10.1023/A:1021243231313
|
12 |
YOUNES A, FAHS M, BELFORT B Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media[J]. Journal of Hydrology, 2013, 504: 132- 141
doi: 10.1016/j.jhydrol.2013.09.041
|
13 |
YOUNES A, MAKRADI A, ZIDANE A, et al A combination of Crouzeix-Raviart, discontinuous Galerkin and MPFA methods for buoyancy-driven flows[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24 (3): 735- 759
doi: 10.1108/HFF-07-2012-0156
|
14 |
DRONIOU J, POTIER C L Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM Journal on Numerical Analysis, 2011, 49 (2): 459- 490
doi: 10.1137/090770849
|
15 |
AAVATSMARK I, EIGESTAD G T, KLAUSEN R A, et al Convergence of a symmetric MPFA method on quadrilateral grids[J]. Computational Geosciences, 2007, 11 (4): 333- 345
doi: 10.1007/s10596-007-9056-8
|
16 |
KLAUSEN R A, RUSSELL T F Relationships among some locally conservative discretization methods which handle discontinuous coefficients[J]. Computational Geosciences, 2004, 8 (4): 341- 377
doi: 10.1007/s10596-005-1815-9
|
17 |
KLAUSEN R A, RADU F A, EIGESTAD G T Convergence of MPFA on triangulations and for Richards' equation[J]. International Journal for Numerical Methods in Fluids, 2008, 58 (12): 1327- 1351
doi: 10.1002/fld.1787
|
18 |
SHENG Z, YUAN G An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics, 2012, 231 (9): 3739- 3754
doi: 10.1016/j.jcp.2012.01.015
|
19 |
ZHOU Y. Parallel general-purpose reservoir simulation with coupled reservoir models and multisegment wells [D]. Stanford: Stanford University, 2012.
|
20 |
WONG Z Y, KWOK F, HORNE R N, et al Sequential-implicit Newton method for multiphysics simulation[J]. Journal of Computational Physics, 2019, 391: 155- 178
doi: 10.1016/j.jcp.2019.04.023
|
21 |
JIN Z L, LIU Y, DURLOFSKY L J Deep-learning-based surrogate model for reservoir simulation with time-varying well controls[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107273
doi: 10.1016/j.petrol.2020.107273
|
22 |
DOTLIĆ M, POKORNI B, PUŠIĆ M, et al Non-linear multi-point flux approximation in the near-well region[J]. Filomat, 2018, 32 (20): 6857- 6867
doi: 10.2298/FIL1820857D
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|