Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2215-2224    DOI: 10.3785/j.issn.1008-973X.2021.11.023
电气工程     
基于逆变器端口模型的电磁干扰滤波器设计
周天翔(),郑晓燕,叶世泽,陈恒林*()
浙江大学 电气工程学院, 浙江 杭州 310027
Electromagnetic interference filter design based on terminal model of inverter
Tian-xiang ZHOU(),Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1766 KB)   HTML
摘要:

逆变器的噪声源阻抗对电磁干扰(EMI)滤波器的滤波效果有较大影响,在设计滤波器时有必要对逆变器的噪声源阻抗进行提取和分析,研究基于逆变器端口模型的无源EMI滤波器设计方法. 建立逆变器的端口电磁干扰等效模型,通过测试逆变器的端口电压和端口电流,采用优化算法提取逆变器的等效噪声源和等效源阻抗. 在考虑噪声源阻抗、负载阻抗以及滤波元件高频特性的情况下,采用优化算法计算滤波元件参数,实现EMI滤波器的量化设计. 针对接入滤波器后部分频点共模干扰超标的问题,分析发生谐振的原因,提出阻尼电路的设计方法. 接入所设计的EMI滤波器进行实验,逆变器输出线的电磁干扰符合标准,验证了所提出的EMI滤波器设计方法.

关键词: 逆变器电磁干扰(EMI)噪声源阻抗EMI滤波器设计谐振抑制    
Abstract:

The noise source impedance of inverter has a great influence on the filtering effect of electromagnetic interference (EMI) filter, and it is necessary to extract and analyze the noise source impedance of inverter when designing the filter. A passive EMI filter design method based on terminal model of inverter was studied. A terminal EMI model of inverter was established. By measuring terminal voltage as well as terminal current of inverter and using optimized algorithm, the equivalent noise source and the equivalent source impedance of inverter were extracted. Considering the noise source impedance, the load impedance and the high-frequency characteristics of filter components, optimization algorithm was used to calculate the component parameters of filter, so as to realize the quantitative design of EMI filter. For the problem that common-mode EMI at some frequency points exceeded limit after connecting the filter, the cause of resonance was analyzed, and a damping circuit design method was proposed. Connecting the designed EMI filter for experiment, EMI of the inverter output lines met the standard, which validated the proposed EMI filter design method.

Key words: inverter    electromagnetic interference (EMI)    noise source impedance    EMI filter design    resonance suppression
收稿日期: 2021-03-15 出版日期: 2021-11-05
CLC:  TM 464  
基金资助: 国家重点研发计划资助项目(2018YFB1500700)
通讯作者: 陈恒林     E-mail: zhoutianxiang@zju.edu.cn;henglin@zju.edu.cn
作者简介: 周天翔(1995—),男,博士生,从事电力电子系统电磁兼容研究. orcid.org/0000-0003-2985-2701. E-mail: zhoutianxiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周天翔
郑晓燕
叶世泽
陈恒林

引用本文:

周天翔,郑晓燕,叶世泽,陈恒林. 基于逆变器端口模型的电磁干扰滤波器设计[J]. 浙江大学学报(工学版), 2021, 55(11): 2215-2224.

Tian-xiang ZHOU,Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN. Electromagnetic interference filter design based on terminal model of inverter. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2215-2224.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.023        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2215

图 1  光伏微型逆变系统
图 2  逆变器端口电磁干扰等效模型
序号 L线与地之间的外加阻抗 N线与地之间的外加阻抗
1
2 2.2 μF电容与1 Ω电阻串联
3 2.2 μF电容与2 Ω电阻串联
4 2.2 μF电容与5 Ω电阻串联
5 2.2 μF电容与1 Ω电阻串联
6 2.2 μF电容与2 Ω电阻串联
7 2.2 μF电容与5 Ω电阻串联
8 2.2 μF电容与2 Ω电阻串联 2.2 μF电容与2 Ω电阻串联
9 2.2 μF电容与5 Ω电阻串联 2.2 μF电容与5 Ω电阻串联
表 1  外加阻抗的元件参数和连接形式
图 3  等效噪声源的幅频曲线
图 4  等效源阻抗的幅频曲线
图 5  实测与计算得到的端口电压ULG对比
图 6  实测与计算得到的端口电压UNG对比
图 7  逆变器端口差模干扰/共模干扰等效模型
图 8  端口差模电压和共模电压与传导干扰标准限值比较
图 9  逆变器所需差模插入损耗和共模插入损耗
图 10  接入π型差模滤波器后端口差模干扰等效模型
方案 CX1/μF CX2/μF LDM/μH
1 4.47 2.83 5.46
2 3.91 4.53 3.55
3 2.94 2.15 7.73
表 2  仿真得到的π型差模滤波器元件参数
图 11  接入π型差模滤波器后的差模干扰
图 12  接入π型共模滤波器后端口共模干扰等效模型
图 13  接入两级π型共模滤波器后端口共模干扰等效模型
方案 CY1/nF CY2/nF CY3/nF LCM1/mH LCM2/mH
1 1.20 0.23 0.46 5.00 0.42
2 1.86 0.13 0.24 1.60 0.46
3 1.35 0.10 0.10 0.38 5.00
表 3  仿真得到的两级π型共模滤波器元件参数
方案 CY1/nF CY2/nF CY3/nF LCM1/mH LCM2/mH
1 1.0 0.5 0.5 5.0 0.4
2 2.2 0.5 0.5 1.5 0.4
3 1.0 0.5 0.5 0.5 5.0
表 4  实际选取的两级π型共模滤波器元件参数
图 14  接入两级π型共模滤波器后的共模干扰
图 15  两级π型共模滤波器高频等效模型
图 16  接入不同阻尼电阻后的共模干扰
图 17  EMI滤波器连接示意图
图 18  接入滤波器后L线和N线的电磁干扰
1 张举良, 高志强, 董全智, 等 光伏发电直流侧共模电压干扰的抑制研究[J]. 电力系统保护与控制, 2019, 47 (14): 102- 108
ZHANG Ju-liang, GAO Zhi-qiang, DONG Quan-zhi, et al Research on suppression of photovoltaic DC side common-mode voltage interference[J]. Power System Protection and Control, 2019, 47 (14): 102- 108
doi: 10.7667/PSPC20191413
2 HAMZA D, QIU M, JAIN P K Application and stability analysis of a novel digital active EMI filter used in a grid-tied PV microinverter module[J]. IEEE Transactions on Power Electronics, 2013, 28 (6): 2867- 2874
doi: 10.1109/TPEL.2012.2219074
3 王冕, 曲东昌, 陈国柱 三相脉冲调制变流器驱动电源电磁兼容性能提升[J]. 浙江大学学报: 工学版, 2016, 50 (4): 657- 662
WANG Mian, QU Dong-chang, CHEN Guo-zhu EMC performance improvement of auxiliary power supplies in three-phase PWM converters[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 657- 662
doi: 10.3785/j.issn.1008-973X.2016.04.009
4 JIANG S, LIU Y, LIANG W, et al Active EMI filter design with a modified LCL-LC filter for single-phase grid-connected inverter in vehicle-to-grid application[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (11): 10639- 10650
doi: 10.1109/TVT.2019.2944220
5 张逸成, 叶尚斌, 张佳佳, 等 电力电子设备传导噪声抑制措施研究综述[J]. 电工技术学报, 2017, 32 (14): 77- 86
ZHANG Yi-cheng, YE Shang-bin, ZHANG Jia-jia, et al Review of conducted noise suppression method for power electronic and electrical equipment[J]. Transactions of China Electrotechnical Society, 2017, 32 (14): 77- 86
6 周峰, 王世山, 孟小利 基于多物理场耦合特性的集成式母线型EMI滤波器设计[J]. 中国电机工程学报, 2016, 36 (9): 2494- 2504
ZHOU Feng, WANG Shi-shan, MENG Xiao-li The design of integrated bus-bar EMI filter based on the coupling characteristics of multi-physical fields[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36 (9): 2494- 2504
7 石磊磊, 王世山, 徐晨琛 二端口网络散射参数理论及其在平面EMI滤波器测试中的应用[J]. 电工技术学报, 2013, 28 (2): 78- 85
SHI Lei-lei, WANG Shi-shan, XU Chen-chen Theory of scatter parameters of two port network and its application in the test of planar EMI filter[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 78- 85
doi: 10.3969/j.issn.1000-6753.2013.02.011
8 BAISDEN A C, BOROYEVICH D, WANG F Generalized terminal modeling of electromagnetic interference[J]. IEEE Transactions on Industry Applications, 2010, 46 (5): 2068- 2079
doi: 10.1109/TIA.2010.2058836
9 BISHNOI H, BAISDEN A C, MATTAVELLI P, et al Analysis of EMI terminal modeling of switched power converters[J]. IEEE Transactions on Power Electronics, 2012, 27 (9): 3924- 3933
doi: 10.1109/TPEL.2012.2190100
10 SHUAI Z, ZHANG J, TANG L, et al Frequency shifting and filtering algorithm for power system harmonic estimation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1554- 1565
doi: 10.1109/TII.2018.2844191
11 CHEN H, WANG T Estimation of common-mode current coupled to the communication cable in a motor drive system[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (6): 1777- 1785
doi: 10.1109/TEMC.2018.2804341
12 CHEN H, YE S Modeling of common-mode impedance of an inverter-fed induction motor from online measurement[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (5): 1581- 1589
doi: 10.1109/TEMC.2017.2779886
13 LI K R, SEE K Y, LI X M Inductive coupled in-circuit impedance monitoring of electrical system using two-port ABCD network approach[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (9): 2489- 2495
doi: 10.1109/TIM.2015.2403091
14 赵波, 闫景瑞, 赵阳 基于双电流探头和四种状态测试的EMI噪声源阻抗提取方法[J]. 电气技术, 2016, (9): 21- 25
ZHAO Bo, YAN Jing-rui, ZHAO Yang EMI noise source impedance extraction method based on double current probe and four kinds of state test[J]. Electrical Engineering, 2016, (9): 21- 25
doi: 10.3969/j.issn.1673-3800.2016.09.005
15 HAMI F, BOULZAZEN H, KADI H High-frequency characterization and modeling of EMI filters under temperature variations[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59 (6): 1906- 1915
doi: 10.1109/TEMC.2017.2679700
16 KOVACEVIC I F, FRIEDLI T, MUSING A M, et al 3-D electromagnetic modeling of parasitics and mutual coupling in EMI filters[J]. IEEE Transactions on Power Electronics, 2014, 29 (1): 135- 149
doi: 10.1109/TPEL.2013.2254130
17 CHEN H, YE S Modeling and optimization of EMI filter by using artificial neural network[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61 (6): 1979- 1987
doi: 10.1109/TEMC.2019.2944887
18 郑晓燕, 叶世泽, 陈恒林 基于全相位FFT的端口电磁干扰建模方法[J]. 电工技术, 2020, (13): 25- 28
ZHENG Xiao-yan, YE Shi-ze, CHEN Heng-lin Port EMI modeling method based on all-phase FFT[J]. Electric Engineering, 2020, (13): 25- 28
19 王兆华, 黄翔东. 数字信号全相位谱分析与滤波技术[M]. 北京: 电子工业出版社, 2009.
20 王培康, 郑峰, 杨小瑜, 等 一种调整共模噪声源阻抗并优化EMI滤波器性能的方法[J]. 中国电机工程学报, 2014, 34 (6): 993- 1000
WANG Pei-kang, ZHENG Feng, YANG Xiao-yu, et al A method for adjusting common mode noise impedance and optimizing EMI filters[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34 (6): 993- 1000
21 张宇. 考虑源阻抗影响的EMI滤波器优化设计[D]. 武汉: 华中科技大学, 2014.
ZHANG Yu. Optimized design of EMI filter considering noise source impedance[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[1] 李洋,齐蓉,代明光. 补偿因子可调逆变器电压外环线性自抗扰控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1279-1288.
[2] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[3] 袁庆伟, 赵荣祥. 考虑死区的三相PWM逆变器共模电压抑制技术[J]. 浙江大学学报(工学版), 2017, 51(11): 2276-2286.
[4] 胡克用, 胥芳, 艾青林, 徐红伟, 欧阳静. 面向多逆变器的微电网冗余群控策略[J]. 浙江大学学报(工学版), 2016, 50(8): 1608-1617.
[5] 张奔奔,胥芳,吴乐彬,艾青林. LCL型并网逆变器自适应谐振抑制[J]. 浙江大学学报(工学版), 2016, 50(1): 180-185.
[6] 王凯, 姚文熙, 吕征宇. 基于直流偏置激励的异步电机离线参数自整定[J]. 浙江大学学报(工学版), 2015, 49(7): 1382-1387.
[7] 朱明磊,赵荣祥. 基于快速分布式主从控制的PCS系统[J]. J4, 2013, 47(11): 2031-2037.
[8] 张国月,曲轶龙,齐冬莲,李冉. 基于重复控制的三电平光伏逆变技术[J]. J4, 2012, 46(7): 1339-1344.
[9] 刘学文,屈稳太,陈勇. 双馈系统中SVPWM有源逆变新技术[J]. J4, 2011, 45(9): 1609-1615.
[10] 王斯然,周霞,姚文熙,吕征宇,王岳人. 锂电池能量回收系统的进网电流优化控制技术[J]. J4, 2011, 45(5): 809-814.
[11] 葛俊旭,李鑫,童水光,吴德忠,田志刚,王鹏. 基于双VSR的风电机组并网控制策略[J]. J4, 2011, 45(3): 480-485.
[12] 雷之力,艾欣,崔明勇,刘晓. 基于模态评估法的微网串联谐振仿真[J]. J4, 2011, 45(1): 178-184.
[13] 吕晓东 李武华 吴建德 何湘宁. 电流瞬时值控制的逆变器并联系统[J]. J4, 2009, 43(1): 153-158.
[14] 姚文熙 吕征宇 胡海兵. 三电平H桥级联逆变器载波移相脉宽调制方式[J]. J4, 2008, 42(8): 1330-1334.
[15] 孙丹 贺益康 何宗元. 基于容错逆变器的永磁同步电机直接转矩控制[J]. J4, 2007, 41(7): 1101-1106.