Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2067-2075    DOI: 10.3785/j.issn.1008-973X.2021.11.006
机械工程     
双螺旋锥形混合器叶片结构对颗粒混合的影响
蔡瑞环(),赵永志*()
浙江大学 能源工程学院 化工机械研究所,浙江 杭州 310027
Effect of screw structure on granular mixing in a double-screw conical mixer
Rui-huan CAI(),Yong-zhi ZHAO*()
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1102 KB)   HTML
摘要:

采用离散单元法(DEM),通过数值模拟研究双螺旋锥形混合器的叶片结构对颗粒混合的影响. 研究主要考察螺径比(双螺旋叶片的螺距和螺旋直径的比例)以及螺旋直径比(较短螺杆和较长螺杆的螺旋叶片直径的比例)对混合器混合效率、设备功率、设备磨损等的影响. 结果表明,不同双螺旋锥形混合器的叶片结构对颗粒的混合、设备功率、设备磨损产生影响,但是总体而言,在不同叶片结构的混合器中,颗粒经过100 s的混合之后都能够达到完全混合状态. 当保持其他参数不变时,随着螺径比的增大,混合器混合效率基本一致,设备功率增大,而设备磨损减小;随着螺旋直径比的增大,混合器混合效率有所提升,设备功率增大,而设备磨损并没有显著的改变.

关键词: 离散单元法(DEM)双螺旋锥形混合器颗粒混合叶片结构设备磨损    
Abstract:

The effects of different types of screws on granular mixing in a double-screw conical mixer were investigated by discrete element method (DEM). Specifically, the effects of the pitch diameter ratio (the ratio of the pitch to the diameter of the screw) and the screw diameter ratio (the ratio of the short screw diameter to the long screw diameter) on the mixing efficiency, device power and wear rate of the device were studied. Results show that different types of screws will affect the granular mixing, the device power as well as the device wear, however, the particles all can be well mixed after 100 s in the double-screw conical mixer with different screws. When other parameters remain unchanged, with the screw diameter ratio increasing, the mixing efficiency keeps similar, and the device power increases, but the wear rate of the device decreases. With the screw diameter ratio increasing, the mixing efficiency increases, and the device power increases, but the wear rate of the device fluctuates within a certain range.

Key words: discrete element method (DEM)    double-screw conical mixer    granular mixing    screw structure    device wear
收稿日期: 2020-11-10 出版日期: 2021-11-05
CLC:  TK 6  
基金资助: 国家自然科学基金资助项目(22078283);浙江大学博士研究生学术新星培养计划资助项目(2019030)
通讯作者: 赵永志     E-mail: rhcai@zju.edu.cn;yzzhao@zju.edu.cn
作者简介: 蔡瑞环(1993—),男,博士生,从事颗粒物质混合分离研究. orcid.org/0000-0002-4642-9895. E-mail: rhcai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蔡瑞环
赵永志

引用本文:

蔡瑞环,赵永志. 双螺旋锥形混合器叶片结构对颗粒混合的影响[J]. 浙江大学学报(工学版), 2021, 55(11): 2067-2075.

Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.006        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2067

图 1  双螺旋锥形混合器
类别 参数 数值
混合器参数 材料
设备的维氏硬度 HV 370
顶部半径 R1/mm 400
底部半径 R2/mm 62.5
高度 H/mm 1 000
初始填充高度/mm 720
自转速度 Ω1/(r·min?1 66.85
公转速度 Ω2/(r·min?1 1.43
螺距 P1/mm 90、120、150、180、210
螺距 P2/mm 112.5、150.0、187.5、225.0、262.5
螺旋直径 D1/mm 120
螺旋直径 D2/mm 90、120、150、180、210
颗粒参数 颗粒直径 d/mm 13.5
颗粒密度/(kg·m?3 2 600
颗粒数量 40 740
碰撞参数 摩擦系数 0.3
弹性恢复系数 0.9
法向弹性系数 kn/(N·m?1 2.9 × 104
切向弹性系数 kt/(N·m?1 1.2 × 104
时间步长/s 1 × 10?4
表 1  双螺旋锥形混合器模拟中使用的各项参数
算例编号 P1/mm P2/mm D1/mm D2/mm P1/D1=P2/D2 D2/D1
1 90 112.5 120 150 0.75 1.25
2 120 150.0 120 150 1.00 1.25
3 150 187.5 120 150 1.25 1.25
4 180 225.0 120 150 1.50 1.25
5 210 262.5 120 150 1.75 1.25
6 150 187.5 120 90 1.25 0.75
7 150 187.5 120 120 1.25 1.00
8 150 187.5 120 180 1.25 1.50
9 150 187.5 120 210 1.25 1.75
表 2  双螺旋锥形混合器模拟算例
图 2  不同双螺旋叶片结构对比图
图 3  颗粒混合状态随时间变化正视图(算例3)
图 4  算例1、3、5中颗粒混合状态随时间变化轴截图
图 5  算例6、3、9中颗粒混合状态随时间变化轴截图
图 6  不同算例中颗粒混合指数对比图
图 7  不同算例中设备功率对比图
图 8  不同算例中设备磨损对比图
1 NOROUZI H, ZARGHAMI R, MOSTOUFI N Insights into the granular flow in rotating drums[J]. Chemical Engineering Research and Design, 2015, 102: 12- 25
doi: 10.1016/j.cherd.2015.06.010
2 YAMAMOTO M, ISHIHARA S, KANO J Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation[J]. Advanced Powder Technology, 2016, 27 (3): 864- 870
doi: 10.1016/j.apt.2015.12.013
3 赵永志, 程易 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J]. 物理学报, 2008, 57 (1): 322- 328
ZHAO Yong-zhi, CHENG Yi Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2008, 57 (1): 322- 328
doi: 10.3321/j.issn:1000-3290.2008.01.052
4 CHANDRATILLEKE G, YU A, STEWART R, et al Effects of blade rake angle and gap on particle mixing in a cylindrical mixer[J]. Powder Technology, 2009, 193 (3): 303- 311
doi: 10.1016/j.powtec.2009.03.007
5 ALIAN M, EIN-MOZAFFARI F, UPRETI S Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM)[J]. Powder Technology, 2015, 274: 77- 87
doi: 10.1016/j.powtec.2015.01.012
6 SAKAI M, SHIGETO Y, BASINSKAS G, et al Discrete element simulation for the evaluation of solid mixing in an industrial blender[J]. Chemical Engineering Journal, 2015, 279: 821- 839
doi: 10.1016/j.cej.2015.04.130
7 LIU P, YANG R, YU A DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99- 107
doi: 10.1016/j.ces.2012.06.015
8 BRONE D, ALEXANDER A, MUZZIO F Quantitative characterization of mixing of dry powders in V-blenders[J]. AICHE Journal, 1998, 44 (2): 271- 278
doi: 10.1002/aic.690440206
9 KUO H, KNIGHT P, PARKER D, et al The influence of DEM simulation parameters on the particle behaviour in a V-mixer[J]. Chemical Engineering Science, 2002, 57 (17): 3621- 3638
doi: 10.1016/S0009-2509(02)00086-6
10 MOLAEI E A, YU A B, ZHOU Z Y Particle scale modelling of mixing of ellipsoids and spheres in gas-fluidized beds by a modified drag correlation[J]. Powder Technology, 2019, 343: 619- 628
doi: 10.1016/j.powtec.2018.11.054
11 张勇, 金保升, 钟文琪 喷动气固流化床颗粒混合规律的实验研究[J]. 中国电机工程学报, 2008, 28 (20): 8- 12
ZHANG Yong, JIN Bao-sheng, ZHONG Wen-qi Experimental investigation on particle mixing in spout-fluid bed[J]. Proceedings of the CSEE, 2008, 28 (20): 8- 12
doi: 10.3321/j.issn:0258-8013.2008.20.002
12 马华庆, 赵永志 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报: 工学版, 2020, 54 (7): 1347- 1354
MA Hua-qing, ZHAO Yong-zhi CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1347- 1354
13 BERGH W, SCARLETT B, KOLAR Z. Computer simulation model of a nauta mixer [J]. Powder Technology, 1993, 77(1): 19-30.
14 BERNTSSON O, DANIELSSON L, LAGERHOLM B, et al Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy[J]. Powder Technology, 2002, 123 (2/3): 185- 193
15 GOLSHAN S, ZARGHAMI R, NOROUZI H N, et al Granular mixing in nauta blenders[J]. Powder Technology, 2017, 305: 279- 288
doi: 10.1016/j.powtec.2016.09.059
16 BEDNAREK X, MARTIN S, NDIAYE A, et al Extrapolation of DEM simulations to large time scale. application to the mixing of powder in a conical screw mixer[J]. Chemical Engineering Science, 2019, 197: 223- 234
doi: 10.1016/j.ces.2018.12.022
17 王凯, 虞军. 化工设备设计全书: 搅拌设备[M]. 北京: 化学工业出版社, 2003.
18 QI F, HEINDEL T, WRIGHT M Numerical study of particle mixing in a lab-scale screw mixer using the discrete element method[J]. Powder Technology, 2017, 308: 334- 345
doi: 10.1016/j.powtec.2016.12.043
19 BAO Y, LI T, WANG D, et al Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer[J]. Particuology, 2020, 49: 146- 158
doi: 10.1016/j.partic.2019.02.002
20 BAO Y, LU Y, CAI Z, et al Effects of rotational speed and fill level on particle mixing in a stirred tank with different impellers[J]. Chinese Journal of Chemical Engineering, 2018, 26 (6): 1383- 1391
doi: 10.1016/j.cjche.2017.11.010
21 OSORIO J, MUZZIO F Effects of processing parameters and blade patterns on continuous pharmaceutical powder mixing[J]. Chemical Engineering and Processing, 2016, 109: 59- 67
doi: 10.1016/j.cep.2016.07.012
22 CAI R, HOU Z, ZHAO Y Numerical study on particle mixing in a double-screw conical mixer[J]. Powder Technology, 2019, 352: 193- 208
doi: 10.1016/j.powtec.2019.04.065
23 CAI R, ZHAO Y An experimentally validated coarse-grain DEM study of monodisperse granular mixing[J]. Powder Technology, 2020, 361: 99- 111
doi: 10.1016/j.powtec.2019.10.023
24 CUNDALL P A, STRACK O D A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29 (1): 47- 65
doi: 10.1680/geot.1979.29.1.47
25 TING J M, CORKUM B T Computational laboratory for discrete element geomechanics[J]. Journal of Computing in Civil Engineering, 1992, 6 (2): 129- 146
doi: 10.1061/(ASCE)0887-3801(1992)6:2(129)
26 LACEY P M C Developments in the theory of particle mixing[J]. Journal of Applied Chemistry, 1954, 4 (5): 257- 268
27 XU L, LUO K, ZHAO Y Numerical prediction of wear in SAG mills based on DEM simulations[J]. Powder Technology, 2018, 329: 353- 363
doi: 10.1016/j.powtec.2018.02.004
28 许磊, 罗坤, 赵永志, 等. 物料粒径对半自磨机衬板磨损的影响[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2255- 2263
XU Lei, LUO Kun, ZHAO Yong-zhi, et al Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2255- 2263
doi: 10.3785/j.issn.1008-973X.2019.12.001
29 FINNIE I Erosion of surfaces by solid particles[J]. Wear, 1960, 3 (2): 87- 103
doi: 10.1016/0043-1648(60)90055-7
[1] 马华庆,赵永志. 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报(工学版), 2020, 54(7): 1347-1354.
[2] 许磊,罗坤,赵永志,樊建人,岑可法. 物料粒径对半自磨机衬板磨损的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2255-2263.
[3] 任立波, 韩吉田, 赵红霞. 单沉浸管流化床内离散颗粒数值模拟[J]. 浙江大学学报(工学版), 2015, 49(1): 150-156.