Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2255-2263    DOI: 10.3785/j.issn.1008-973X.2019.12.001
机械与能源工程     
物料粒径对半自磨机衬板磨损的影响
许磊1,2(),罗坤2,赵永志1,*(),樊建人2,岑可法2
1. 浙江大学 化工机械研究所,浙江 杭州 310027
2. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Effect of particle size on liner wear in semi-autogenous mill
Lei XU1,2(),Kun LUO2,Yong-zhi ZHAO1,*(),Jian-ren FAN2,Ke-fa CEN2
1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1651 KB)   HTML
摘要:

采用数值计算方法分析粒径对半自磨(SAG)机衬板磨损的影响。采用离散单元法(DEM)描述物料运动,采用切向碰撞能量磨损模型(SIEM)预测壁面磨损. 结果表明,粒径大小对衬板磨损存在显著影响. 粒径增大,衬板磨损亦随之增大;当粒径较小时(如:d=30 mm),磨损增幅尤为明显. 提升条的磨损主要在经过底脚区与颗粒发生剧烈碰撞时产生,不同粒径大小下均如此. 大颗粒获得的动能要远远大于小颗粒,且相比于小颗粒,大颗粒改变运动状态需要更长的时间,导致剧烈磨损的持续时间亦明显增加. 粒径大小对磨损在提升条上的分布无明显影响.

关键词: 离散单元法(DEM)物料粒径半自磨(SAG)机衬板磨损冲蚀研磨    
Abstract:

The effect of particle size on liner wear in semi-autogenous grinding (SAG) mills was investigated using a numerical approach. The charge motion was calculated using discrete element method (DEM) and the liner wear was predicted using shear impact energy model (SIEM). The simulation results indicate that the particle size has evident influence on the liner wear. The liner wear increases with the increase of particle size; the increasing rate is evidently larger when the particle size is small (e.g. d=30 mm). The liner wear mainly occurs during the intense collisions in the bulk toe, which is not altered by the particle size. The kinetic energy of the large particles is significantly larger than that of the small particles. The large particles needs longer time to change the motion state compared with the small particles, which leads to longer intense collisions. The particle size has little influence on the distribution of wear on the lifters.

Key words: discrete element method (DEM)    particle size    semi-autogenous grinding (SAG) mill    liner    wear    erosion    grinding
收稿日期: 2018-11-02 出版日期: 2019-12-17
CLC:  TD 453  
基金资助: 国家自然科学基金资助项目(21476193)
通讯作者: 赵永志     E-mail: zjuxulei@163.com;yzzhao@zju.edu.cn
作者简介: 许磊(1991—),男,博士生,从事装备冲蚀磨损的数值模拟方法研究. orcid.org/0000-0002-7309-7478. E-mail: zjuxulei@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
许磊
罗坤
赵永志
樊建人
岑可法

引用本文:

许磊,罗坤,赵永志,樊建人,岑可法. 物料粒径对半自磨机衬板磨损的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2255-2263.

Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2255

图 1  模拟中所用半自磨(SAG)机结构尺寸示意图
参数 符号 数值 单位
衬板维氏硬度 HV 370 N/mm2
衬板长度 ? 0.7 m
提升条高度 H 152 mm
提升条数量 ? 60 ?
颗粒密度 ρ 4 500(矿石),
7 800(钢球)
kg/m3
颗粒维氏硬度 HV 160(矿石),370(钢球) N/mm2
矿石之间的恢复系数 eP-P 0.3 ?
矿石与钢球以及衬板间恢复系数 eP-L 0.5 ?
钢球与衬板间恢复系数 eB-L 0.8 ?
滑动摩擦系数 fs 0.5 ?
法向弹性系数 kn 2.8 × 106 N/m
切向弹性系数 kt 8 × 105 N/m
半自磨机转速 ? 10.5 r/min
切片厚度 ? 0.7 m
总填充率 ? 35 %
钢球填充率 ? 15 %
表 1  半自磨(SAG)机衬板磨损模拟中使用的各项参数
图 2  物料运动特征示意图(蓝色:0,红色:12 m/s)
图 3  不同粒径大小下单块提升条的磨损曲线图
图 4  不同粒径大小下单个提升条沿SAG机内圆周位置的瞬时磨损率曲线图
图 5  不同粒径大小下目标区域内毗邻提升条颗粒的平均速率沿SAG机内圆周位置的分布曲线图
d/mm Et / J J d/mm Et / J J
30 1.52 0.053 100 43.50 1.850
40 3.67 0.146 150 152.98 8.955
60 11.13 0.458 ? ? ?
表 2  沿SAG机内圆周110°~170°位置且宽度为提升条高度2倍区域内的颗粒平均平动动能和转动动能
图 6  不同粒径大小下目标区域内毗邻提升条颗粒的速率标准差沿SAG机内圆周位置的分布曲线图
图 7  提升条4个位置处瞬时磨损率在目标区域内沿SAG机内圆周分布曲线图
图 8  提升条4个位置处所受切向应力在目标区域内沿SAG机内圆周分布曲线图
d/mm $\displaystyle\sum$ PP-L / (104 J/s) $\displaystyle\sum$ PP-P / (105 J/s) d/mm $\displaystyle\sum$ PP-L / (104 J/s) $\displaystyle\sum$ PP-P / (105 J/s)
30 1.27 2.48 100 2.78 7.64
40 1.70 3.41 150 3.67 8.98
60 2.05 5.45 ? ? ?
表 3  衬板以及颗粒间碰撞的总能耗率
图 9  颗粒与衬板的碰撞频谱图
图 10  颗粒与衬板碰撞能耗谱图
1 姚军, 曾子华, 周芳, 等 颗粒射流冲击材料行为研究[J]. 北京航空航天大学学报, 2017, 43 (11): 2266- 2272
YAO Jun, ZENG Zi-hua, ZHOU Fang, et al Investigation of behaviour of particle impact on material by impinging jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (11): 2266- 2272
2 阎维平, 马凯, 高正阳, 等 增压富氧燃煤锅炉省煤器管束磨损研究[J]. 西安交通大学学报, 2013, 47 (3): 53- 59
YAN Wei-ping, MA Kai, GAO Zheng-yang, et al Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler[J]. Journal of Xi’an Jiaotong University, 2013, 47 (3): 53- 59
doi: 10.7652/xjtuxb201303010
3 HU G, OTAKI H, WATANUKI K Motion analysis of a tumbling ball mill based on non-linear optimization[J]. Minerals Engineering, 2000, 13 (8): 933- 947
4 CLEARY P W, HOYER D Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment[J]. International Journal of Mineral Processing, 2000, 59 (2): 131- 148
doi: 10.1016/S0301-7516(99)00063-0
5 赵跃民, 张曙光, 焦红光, 等 振动平面上粒群运动的离散元模拟[J]. 中国矿业大学学报, 2006, 35 (5): 586- 590
ZHAO Yue-min, ZHANG Shu-guang, JIAO Hong-guang, et al Simulation of discrete element of particles motion on the vibration plane[J]. Journal of China University of Mining and Technology, 2006, 35 (5): 586- 590
doi: 10.3321/j.issn:1000-1964.2006.05.005
6 田瑞霞, 焦红光 离散元软件PFC在矿业工程中的应用现状及分析[J]. 矿冶, 2011, 20 (1): 79- 82
TIAN Rui-xia, JIAO Hong-guang Application status and analysis of discrete element software PFC in mining engineering[J]. Mining and Metallurgy, 2011, 20 (1): 79- 82
doi: 10.3969/j.issn.1005-7854.2011.01.019
7 ZHU H P, ZHOU Z Y, YANG R Y, et al Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62 (13): 3378- 3396
doi: 10.1016/j.ces.2006.12.089
8 CLEARY P W Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition[J]. International Journal of Mineral Processing, 2001a, 63 (2): 79- 114
doi: 10.1016/S0301-7516(01)00037-0
9 MISHRA B K A review of computer simulation of tumbling mills by the discrete element method: Part II—Practical applications[J]. International Journal of Mineral Processing, 2003, 71 (1): 95- 112
10 KALALA J T, BWALYA M, MOYS M H Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study[J]. Minerals Engineering, 2005, 18 (15): 1392- 1397
doi: 10.1016/j.mineng.2005.02.010
11 CLEARY P W, OWEN P Effect of liner design on performance of a HICOM? mill over the predicted liner life cycle[J]. International Journal of Mineral Processing, 2015, 134: 11- 22
doi: 10.1016/j.minpro.2014.11.003
12 POWELL M S, WEERASEKARA N S, COLE S, et al DEM modelling of liner evolution and its influence on grinding rate in ball mills[J]. Minerals Engineering, 2011, 24 (3): 341- 351
13 崔泽群. 基于离散元法的球磨机最优化设计理论研究[D]. 杭州: 浙江大学, 2013.
CUI Ze-qun. Optimal design theory of ball mill based on discrete element method[D]. Hangzhou: Zhejiang University, 2013.
14 李鸿程. 基于离散单元法的球磨机工作参数优化[D]. 昆明: 昆明理工大学, 2013.
LI Hong-cheng. Research on working parameters optimization of ball mill using discrete element method[D]. Kunming: Kunming University of Science and Technology, 2013.
15 陶寅, 房怀英, 杨建红, 等 立轴冲击破碎机加速板磨损仿真分析[J]. 矿山机械, 2017, 45 (6): 37- 42
TAO Yin, FANG Huai-ying, YANG Jiang-hong, et al Simulation and analysis on wear of accelerating board of vertical-shaft impact crusher[J]. Mining and Processing Equipment, 2017, 45 (6): 37- 42
doi: 10.3969/j.issn.1001-3954.2017.06.010
16 FINNIE I Erosion of surfaces by solid particles[J]. Wear, 1960, 3 (2): 87- 103
doi: 10.1016/0043-1648(60)90055-7
17 LYCZKOWSKI R W, BOUILLARD J X State-of-the-art review of erosion modeling in fluid/solids systems[J]. Progress in Energy and Combustion Science, 2002, 28 (6): 543- 602
doi: 10.1016/S0360-1285(02)00022-9
18 ZHAO Y, XU L, ZHENG J CFD–DEM simulation of tube erosion in a fluidized bed[J]. AIChE Journal, 2017, 63: 418- 437
doi: 10.1002/aic.15398
19 XU L, LUO K, ZHAO Y Numerical prediction of wear in SAG mills based on DEM simulations[J]. Powder Technology, 2018, 329: 353- 363
doi: 10.1016/j.powtec.2018.02.004
20 赵永志, 程易 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J]. 物理学报, 2008, 57 (1): 322- 328
ZHAO Yong-zhi, CHENG Yi Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2008, 57 (1): 322- 328
doi: 10.3321/j.issn:1000-3290.2008.01.052
21 TING J M, CORKUM B T Computational laboratory for discrete element geomechanics[J]. Journal of Computing in Civil Engineering, 1992, 6 (2): 129- 146
doi: 10.1061/(ASCE)0887-3801(1992)6:2(129)
22 FINNIE I, WOLAK J, KABIL Y Erosion of metals by solid particles[J]. Journal of Materials, 1967, 2 (3): 682- 700
23 BANISI S, HADIZADEH M 3-D liner wear profile measurement and analysis in industrial SAG mills[J]. Minerals Engineering, 2007, 20 (2): 132- 139
doi: 10.1016/j.mineng.2006.07.008
[1] 程训,余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报(工学版), 2021, 55(5): 896-904.
[2] 汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.
[3] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[4] 袁瑞峰, 孙志坚, 杨继虎, 杨明, 胡亚才, 俞自涛. 氟塑钢复合管冲蚀磨损性能的试验研究[J]. 浙江大学学报(工学版), 2018, 52(1): 43-49.
[5] 徐兵, 潮群, 张军辉, 李莹. 基于平衡系数的滑靴优化模型[J]. 浙江大学学报(工学版), 2015, 49(6): 1009-1014.
[6] 訚耀保, 付嘉华, 金瑶兰. 射流管伺服阀前置级冲蚀磨损数值模拟[J]. 浙江大学学报(工学版), 2015, 49(12): 2252-2260.
[7] 任立波, 韩吉田, 赵红霞. 单沉浸管流化床内离散颗粒数值模拟[J]. 浙江大学学报(工学版), 2015, 49(1): 150-156.
[8] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[9] 应征, 章明, 王青, 柯映林. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. J4, 2013, 47(2): 209-215.
[10] 刘富君, 孔帅, 凌张伟, 郑慕林, 钱岳强, 金南辉, 王强, 李翔. 基于风险检验技术的电站锅炉过热器评定方法[J]. J4, 2011, 45(10): 1791-1798.
[11] 刘少光 吴进明 张升才 胡小海 荣淑杰 李志章. 氮气保护对纳米复合涂层组织与性能的影响[J]. J4, 2008, 42(3): 493-497.
[12] 陈卫祥 涂江平 王浪云 王玉琮 刘新宽 CHARLS O L K. 铝合金上电沉积Ni-P-CNTs复合镀层及其摩擦性能研究[J]. J4, 2008, 42(11): 2033-2036.
[13] 闫洁 李文春 樊建人 岑可法. 绕流中颗粒与柱体碰撞和磨损的直接数值模拟[J]. J4, 2007, 41(4): 589-593.
[14] 朱流 郦剑 凌国平 王幼文. 超细ATC陶瓷制备及其干滑动磨损研究[J]. J4, 2005, 39(12): 1842-1846.
[15] 宋国良 周俊虎 刘建忠 曹欣玉 岑可法. 浓相气力输送中变径管道优化设计方法的研究[J]. J4, 2005, 39(11): 1788-1792.