Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1960-1967    DOI: 10.3785/j.issn.1008-973X.2021.10.018
机械与能源工程     
导热油换热器预热煤粉气流的试验研究
来振亚1(),毛睿2,李源2,张平安2,杜学森2,周昊1,*()
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
2. 润电能源科学技术有限公司,河南 郑州 450052
Experimental study on preheating pulverized coal air flow by heat exchanger using thermal oil
Zhen-ya LAI1(),Rui MAO2,Yuan LI2,Ping-an ZHANG2,Xue-sen DU2,Hao ZHOU1,*()
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Rundian Energy Science and Technology Limited Company, Zhengzhou 450052, China
 全文: PDF(1415 KB)   HTML
摘要:

提出在煤粉进入燃烧室之前对煤粉气流进行预热处理的新型工艺,减轻一次风对炉膛的冷却效应,加速煤粉燃烧. 设计采用导热油预热煤粉气流的带翅板管壳式换热器,搭建中试规模试验台,通过实验研究油温、油质量流量、风温、风速、煤风质量比对系统换热特性及试验台阻力特性的影响. 试验结果验证了该换热器采用导热油来预热一次风煤粉气流的技术可行性,提出的新型预热工艺具有环保节能的现实意义. 试验结果表明,当煤风质量比为0.15时,190 ℃的导热油可以将煤粉气流从58.4 ℃预热到113 ℃以上. 提出的预热工艺有利于改善煤粉气流的着火性能,促进煤粉锅炉的低负荷稳燃.

关键词: 电站锅炉煤粉预热换热器着火特性    
Abstract:

A novel technology of pre-heating the pulverized coal air flow before the pulverized coal entering the combustion chamber was proposed to reduce the cooling effect of the primary air on the furnace and accelerate the combustion of the pulverized coal. A shell-and-tube heat exchanger with finned plate that used heat transfer oil to preheat pulverized coal air flow was designed. A pilot scale test bench was constructed to experimentally analyze the effects of oil temperature, oil mass flow, air temperature, air speed, and coal-air mass ratio on the heat transfer characteristics of the system and the resistance characteristics of the test bench. The experimental results verified the technical feasibility of the heat exchanger using heat transfer oil to preheat the primary pulverized coal air flow. The proposed preheating technology had practical significance for environmental protection and energy saving. The experimental results showed that the heat transfer oil at 190 ℃ could preheat the pulverized coal air flow from 58. 4 ℃ to above 113 ℃ when the coal-air mass ratio was 0.15. The proposed preheating process was beneficial to improve the ignition performance of the pulverized coal air flow and promote the low-load stable combustion of the pulverized coal boiler.

Key words: utility boiler    pulverized coal    preheat    heat exchanger    ignition characteristics
收稿日期: 2020-11-18 出版日期: 2021-10-27
CLC:  TK 16  
基金资助: 国家自然科学基金创新研究群体资助项目(51621005)
通讯作者: 周昊     E-mail: lzywyyx2015@163.com;zhouhao@cmee.zju.edu.cn
作者简介: 来振亚(1995—),男,博士生,从事堆积颗粒体系气流阻力及储能特性的研究. orcid.org/0000-0003-3565-9182. E-mail: lzywyyx2015@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
来振亚
毛睿
李源
张平安
杜学森
周昊

引用本文:

来振亚,毛睿,李源,张平安,杜学森,周昊. 导热油换热器预热煤粉气流的试验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1960-1967.

Zhen-ya LAI,Rui MAO,Yuan LI,Ping-an ZHANG,Xue-sen DU,Hao ZHOU. Experimental study on preheating pulverized coal air flow by heat exchanger using thermal oil. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1960-1967.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.018        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1960

图 1  风粉换热器的设计图
图 2  中试试验系统的示意图
工况 tin,air /℃ vair /(m·s?1) tin,oil /℃ qm /(t·h?1) R
1 60 22.8 190 0.6 0
2 60 22.8 190 1.4 0
3 60 22.8 190 2.2 0
4 60 22.8 165 1.4 0
5 60 22.8 215 1.4 0
6 60 22.8 270 1.4 0
7 40 13.3 190 1.4 0
8 40 18.4 190 1.4 0
9 40 23.9 190 1.4 0
10 40 22.0 190 1.4 0
11 60 22.0 190 1.4 0
12 80 22.0 190 1.4 0
13 60 22.5 190 1.4 0
14 60 22.5 190 1.4 0.15
15 60 22.5 190 1.4 0.25
表 1  煤粉气流预热的实验工况
材料 tin /℃ ρ /(kg·m?3) cp /(J·kg?1·K?1) λ/(W·m?1·K?1)
导热油 165 769 2505 0.1107
导热油 190 751 2590 0.1078
导热油 215 735 2690 0.1049
导热油 270 691 2860 0.0985
煤粉 60 1400 1130 0.0650
20号钢 7850 465 48
表 2  材料的物理特性
图 3  风粉换热器的内部结构及热电偶编号
图 4  换热器的传热均匀性
图 5  进口油温对空气温度轴向分布的影响
图 6  进口油温对换热器传热特性的影响
图 7  油质量流量对空气温度轴向分布的影响
图 8  油质量流量对换热器传热特性的影响
图 9  进口风温对空气温度轴向分布的影响
图 10  进口风温对换热器传热特性的影响
图 11  进口风速对空气温度轴向分布的影响
图 12  进口风速对换热器传热特性的影响
图 13  煤风质量比对空气温度轴向分布的影响
图 14  煤风质量比对换热器传热特性的影响
图 15  换热器的阻力特性
1 SUGIMOTO M, MARUTA K, TAKEDA K, et al Stabilization of pulverized coal combustion by plasma assist[J]. Thin Solid Films, 2002, 407: 186- 191
doi: 10.1016/S0040-6090(02)00035-4
2 KANILO P M, KAZANTSEV V I, RASYUK N I, et al Microwave plasma combustion of coal[J]. Fuel, 2003, 82: 187- 193
doi: 10.1016/S0016-2361(02)00201-6
3 崔凤誉, 张玉周 等离子煤粉点火燃烧器工业性试验研究及应用[J]. 中国电力, 2001, 34 (2): 16- 20
CUI Feng-yu, ZHANG Yu-zhou Industrial experimental study and application of plasma pulverized coal ignition burner[J]. Electric Power, 2001, 34 (2): 16- 20
doi: 10.3969/j.issn.1004-9649.2001.02.005
4 王爱生, 唐宏, 王公林, 等 采用等离子体直接引燃煤粉技术的研究及应用[J]. 中国电力, 2002, 35 (1): 80- 84
WANG Ai-sheng, TANG Hong, WANG Gong-lin, et al Application and development of plasma ignition technology for coal powder[J]. Electric Power, 2002, 35 (1): 80- 84
doi: 10.3969/j.issn.1004-9649.2002.01.020
5 张孝勇, 王雨蓬, 姜伟力, 等 等离子体点燃煤粉的热物理分析[J]. 中国电力, 2005, 38 (12): 82- 84
ZHANG Xiao-yong, WANG Yu-peng, JIANG Wei-li, et al Thermalphysicals analysis of plasma igniting pulverized coal powder[J]. Electric Power, 2005, 38 (12): 82- 84
doi: 10.3969/j.issn.1004-9649.2005.12.019
6 LI W, CEN K, ZHENG C, et al Induction-heating ignition of pulverized coal stream[J]. Fuel, 2004, 83: 2103- 2107
doi: 10.1016/j.fuel.2004.06.011
7 周俊虎, 石伟, 周志军, 等 煤粉浓度对煤粉高温热壁点火影响的试验研究[J]. 中国电机工程学报, 2003, 23 (7): 208- 211
ZHOU Jun-hu, SHI Wei, ZHOU Zhi-jun, et al Experimental study of effect of pulverized coal concentration on coal ignition with hot wall[J]. Proceedings of the CSEE, 2003, 23 (7): 208- 211
doi: 10.3321/j.issn:0258-8013.2003.07.042
8 周俊虎, 聂欣, 周志军, 等 无油点火燃烧器内煤粉浓度与着火点关系试验研究[J]. 热力发电, 2004, 33 (11): 14- 16
ZHOU Jun-hu, NIE Xin, ZHOU Zhi-jun, et al Experimental study on the relationship between coal concentration and ignition point in oil-free ignition burner[J]. Thermal Power Generation, 2004, 33 (11): 14- 16
doi: 10.3969/j.issn.1002-3364.2004.11.005
9 周俊虎, 聂欣, 周志军, 等 无油点火燃烧器着火距离的影响因素[J]. 浙江大学学报:工学版, 2006, 40 (10): 1797- 1800
ZHOU Jun-hu, NIE Xin, ZHOU Zhi-jun, et al Influencing factors of ignition distance in no-oil ignition combustor[J]. Journal of Zhejiang University:Engineering Science, 2006, 40 (10): 1797- 1800
doi: 10.3785/j.issn.1008-973X.2006.10.028
10 LI Z, LIU C, ZHU Q, et al Experimental studies on the effect of the pulverized coal concentration on lean-coal combustion in a lateral-ignition tiny-oil burner[J]. Energy and Fuels, 2010, 24 (7/8): 4161- 4165
11 LIU C, LI Z, ZHAO Y, et al Influence of coal-feed rates on bituminous coal ignition in a full-scale tiny-oil ignition burner[J]. Fuel, 2010, 89: 1690- 1694
doi: 10.1016/j.fuel.2009.08.008
12 LI Z, LIU C, YANG Z, et al Influence of the coal feed rate on lean coal ignition in a full-scale tiny-oil ignition burner[J]. Energy and Fuels, 2010, 24 (1): 375- 378
doi: 10.1021/ef900859q
13 OUYANG Z, ZHU J, LU Q Experimental study on preheating and combustion characteristics of pulverized anthracite coal[J]. Fuel, 2013, 113: 122- 127
doi: 10.1016/j.fuel.2013.05.063
14 JUN W, ZHU J, LU Q Experimental study on combustion characteristics and NOx emissions of pulverized anthracite preheated by circulating fluidized bed[J]. Journal of Thermal Science, 2011, 20 (4): 355- 361
doi: 10.1007/s11630-011-0481-6
15 ZHU J, OUYANG Z, LU Q An experimental study on NOx emissions in combustion of pulverized coal preheated in a circulating fluidized bed[J]. Energy and Fuels, 2013, 27 (12): 7724- 7729
doi: 10.1021/ef402146w
16 ZHU S, LU Q, ZHU J, et al Experimental study on NOx, emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92 (2): 247- 256
doi: 10.1016/j.joei.2018.01.011
17 OUYANG Z, LIU W, ZHU J, et al Experimental research on combustion characteristics of coal gasification fly ash in a combustion chamber with a self-preheating burner[J]. Fuels, 2018, 215 (1): 378- 385
18 SONG W, LI S, OUYANG Z Operational performance characteristics of a novel fluidized bed with the internal separator for pulverized coal self-sustained preheating[J]. Powder Technology, 2020, 36 (1): 782- 790
19 李永毅, 徐钢, 薛小军, 等 燃煤电站一次风加热流程优化的高效集成系统性能分析[J]. 中国电机工程学报, 2017, 37 (20): 144- 153
LI Yong-yi, XU Gang, XUE Xiao-jun, et al Performance analysis of the efficient integrated system of coal-fired power plant based on optimized primary air heating process[J]. Proceedings of the CSEE, 2017, 37 (20): 144- 153
20 刘仁生, 曹晨忠, 赵兵, 等 预热高炉喷吹煤粉提高燃烧效率的研究[J]. 煤炭加工与综合利用, 2010, 6 (6): 46- 48
LIU Ren-sheng, CAO Chen-zhong, ZHAO Bing, et al Research on preheating pulverized coal injected in blast furnace to improve combustion efficiency[J]. Coal Processing and Comprehensive Utilization, 2010, 6 (6): 46- 48
doi: 10.3969/j.issn.1005-8397.2010.06.015
21 杨永昌. 高炉喷吹煤粉预热工艺及预热对煤粉理化性质的影响[D]. 北京: 北京科技大学, 2009.
YANG Yong-chang. The blast furnace injection coal powder preheating and impact on its physical and chemical properties [D]. Beijing: Beijing University of Science and Technology, 2009.
22 FRANK S, JENS L, NICOLE H, et al Successful preheating of pulverized hard coal and lignite for blast furnace PCI[J]. Steel Research International, 2016, 86 (8): 993- 1001
23 郭朝令, 徐建国, 魏兆龙 煤粉气流着火热的计算[J]. 河南教育学院学报:自然科学版, 1999, 8 (2): 35- 36
GUO Zhao-ling, XU Jian-guo, WEI Zhao-long Calculation of the ignition heat of pulverized coal air flow[J]. Journal of Henan College of Education:Natural Science, 1999, 8 (2): 35- 36
24 沈珞婵, 高翔, 骆仲泱 气固两相流横掠圆管传热的研究[J]. 中国电机工程学报, 1996, 16 (6): 400- 405
SHEN Luo-chan, GAO Xiang, LUO Zhong-yang Heat transfer of tubes in gas-solid cross flow[J]. Proceedings of the CSEE, 1996, 16 (6): 400- 405
doi: 10.3321/j.issn:0258-8013.1996.06.009
[1] 聂立,蔡润夏,鲁佳易,程伟,张文杰,巩李明,薛大勇,张缦,杨海瑞,吕俊复. 循环流化床外置换热器壁温偏差改进措施[J]. 浙江大学学报(工学版), 2021, 55(3): 578-585.
[2] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[3] 韩联进, 巫江虹, 薛志强. 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报(工学版), 2018, 52(4): 641-648.
[4] 李华山, 王汉治, 王令宝, 王显龙, 卜宪标. 溶液热交换器对双吸收式热变换器性能的影响[J]. 浙江大学学报(工学版), 2017, 51(3): 471-477.
[5] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[6] 王美燕, 张正威. 竖直地埋管换热器热作用半径的估算方法[J]. J4, 2013, 47(12): 2153-2159.
[7] 王子阳, 张仪萍, 战国会, 俞亚南. 有渗流时埋管换热器传热模型[J]. J4, 2012, 46(8): 1450-1456.
[8] 周志军,姜旭东,周俊虎,刘建忠,岑可法. 煤粉富氧燃烧着火模式判断和动力学参数分析[J]. J4, 2012, 46(3): 482-488.
[9] 吴学成, 王怀, 胡倩, 吴迎春, 陈玲红, 周昊, 岑可法. 基于轨迹图像的煤粉颗粒速度和粒径测量[J]. J4, 2011, 45(8): 1458-1462.
[10] 刘富君, 孔帅, 凌张伟, 郑慕林, 钱岳强, 金南辉, 王强, 李翔. 基于风险检验技术的电站锅炉过热器评定方法[J]. J4, 2011, 45(10): 1791-1798.
[11] 杨卫娟 周志军 刘茂省 秦岭 刘建忠 周俊虎 岑可法. 锅炉低NOx燃烧中的三次风运行优化[J]. J4, 2008, 42(7): 1227-1230.
[12] 焦有宙 骆仲泱 施正伦 方梦祥 程乐鸣 岑可法. 煤粉炉联产Q相水泥熟料试验研究[J]. J4, 2008, 42(6): 977-983.
[13] 周俊虎 刘茂省 周志军 杨卫娟 刘建忠 岑可法. 影响常规煤粉再燃效果的主要因素[J]. J4, 2008, 42(10): 1751-1755.
[14] 周永刚 邹平国 凌柏林 赵虹. 偏置周界风燃烧器综合性能数值试验[J]. J4, 2007, 41(7): 1172-1176.
[15] 刘林 俞小莉 翟昕 张喜州. 液氮发动机的热力循环设计[J]. J4, 2006, 40(11): 1989-1993.