Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 318-329    DOI: 10.3785/j.issn.1008-973X.2021.02.012
土木工程、交通工程     
考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测
应宏伟1,2,3(),程康1,2,4,俞建霖1,2,*(),徐日庆1,2,裘志坚5,詹晓波6,秦建设5,楼春晖1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
3. 河海大学 岩土工程科学研究所,江苏 南京 210098
4. 中铁十一局集团有限公司,湖北 武汉 430061
5. 杭州地铁集团有限责任公司,浙江 杭州 310020
6. 中天建设集团有限公司,浙江 杭州 310020
Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground
Hong-wei YING1,2,3(),Kang CHNEG1,2,4,Jian-lin YU1,2,*(),Ri-qing XU1,2,Zhi-jian QIU5,Xiao-bo ZHAN6,Jian-she QIN5,Chun-hui LOU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
3. Institue of Geotechnical Engineering Science, Hohai University, Nanjing 210098, China
4. China Railway 11th Bureau Group Co. Ltd, Wuhan 430061, China
5. Hangzhou Metro Group Co. Ltd, Hangzhou 310020, China
6. Zhongtian Construction Group Co. Ltd, Hangzhou 310008, China
 全文: PDF(2682 KB)   HTML
摘要:

从工程实际出发,建立考虑基坑坑底及侧壁卸荷作用的基坑开挖引起的附加荷载计算模型;基于Mindlin解给出由基坑开挖所引起的邻近隧道处的竖向附加荷载;引入能考虑隧道任意埋深效应的修正基床反力系数, 将既有隧道简化为搁置于Pasternak地基上的Euler-Bernoulli梁,进而提出基坑开挖下邻近既有隧道响应的简化计算方法. 所提方法能考虑隧道埋深效应以及地基剪切效应,与工程实际更为接近. 通过与三维有限元以及2组已发表工程实测数据的对比,验证所提简化计算方法的合理性与适用性. 针对地基弹性模量、地基剪切模量、隧道纵向等效抗弯刚度、隧道-基坑夹角、隧道埋深、隧道-基坑间距以及基坑几何形状等主要参数对隧道纵向位移的影响进行系统分析. 结果表明:隧道与基坑平行工况下的隧道最大位移是垂直工况下的1.60倍;提高隧道纵向抗弯刚度可以有效减小隧道的最大位移,但这种“削弱作用”会随隧道-基坑间距的增大而减小;随着隧道埋深、隧道-基坑间距的增大,隧道最大位移呈非线性递减规律;基坑的“长开挖”会影响隧道的位移和隧道隆起范围,而“短开挖”则主要影响隧道的位移. 研究成果可以为较为合理地预测既有盾构隧道在邻近基坑开挖下的响应规律提供理论支持.

关键词: 基坑开挖隧道竖向位移任意埋深剪切效应长开挖短开挖    
Abstract:

A simplified vertical additional load calculation model of basement excavation, considering the unloading effect of bottom as well as sidewalls, was established based on the engineering practice. The vertical additional load at adjacent tunnel caused by basement excavation was given based on the Mindlin solution. A simplified calculation method was proposed for the response of tunnel subjected to an adjacent basement excavation, by introducing a modified subgrade reaction coefficient which could consider the arbitrary tunnel buried depth and regarding the existing tunnel as a continuous Euler-Bernoulli beam resting on Pasternak foundation. The proposed method could consider the effect of tunnel buried depth as well as the ground shear effect, closer to the engineering practice. The rationality and the applicability of the proposed method were verified by comparing it with the three-dimensional finite element method, as well as two groups of published engineering measured data. The main parameters such as elastic modulus and shear modulus of ground, the longitudinal equivalent bending stiffness of tunnel, the angle between tunnel and excavation, the embedded depth of the tunnel, the distance between tunnel and excavation as well as the geometric shape of excavation were all systematically studied. Results indicate that the maximum tunnel vertical displacement, when the tunnel was parallel to the excavation, was 1.60 times of that when the tunnel was perpendicular to the excavation. The maximum displacement of the tunnel can be effectively reduced by increasing the longitudinal bending rigidity of the tunnel, but this “reducing effect” will decrease with the increasing distance between the excavation and the tunnel. The maximum displacement of the tunnel exhibits a non-linear decreasing law with the increase of the tunnel buried depth and the distance between tunnel and excavation. The "long excavation" will affect the displacement and the uplift range of the tunnel, while the "short excavation" mainly affects the tunnel displacement. Results could provide some theoretical support for reasonably predicting the response of existing tunnel due to adjacent excavation.

Key words: basement excavation    tunnel vertical displacement    arbitrary depth    shear effect    long excavation    short excavation
收稿日期: 2019-11-29 出版日期: 2021-03-09
CLC:  TU 375.2  
基金资助: 国家自然科学基金资助项目(41672264,51678523);浙江省重点研发计划资助项目(2019C03103)
通讯作者: 俞建霖     E-mail: ice898@zju.edu.cn;yujianlin72@126.com
作者简介: 应宏伟(1971—),男,教授,从事土与结构相互作用研究. orcid.org/0000-0003-2079-6504. E-mail: ice898@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
应宏伟
程康
俞建霖
徐日庆
裘志坚
詹晓波
秦建设
楼春晖

引用本文:

应宏伟,程康,俞建霖,徐日庆,裘志坚,詹晓波,秦建设,楼春晖. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.

Hong-wei YING,Kang CHNEG,Jian-lin YU,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Jian-she QIN,Chun-hui LOU. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 318-329.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.012        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/318

图 1  基坑开挖对邻近隧道影响计算模型
图 2  基坑与下卧隧道相对位置平面图
图 3  基坑-隧道相互作用的三维有限元模型
D /mm ls /m t /m Ec /MPa m lb /mm Eb /MPa (EI)eq /(MN·m2)
6200 1.2 0.35 3.45×104 17 400 20.6×105 78000
表 1  隧道管片参数
土层 $E_{50}^{{\rm{ref}}}/{\rm{MPa} }$ $E_{{\rm{oed}}}^{{\rm{ref}}}\;/{\rm{MPa} }$ $E_{ {\rm{ur} } }^{{\rm{ref}}}/{\rm{MPa} }$ $G_0^{{\rm{ref}}}/{\rm{MPa} }$ γ0.7 Rf c′ /kPa φ′ /(°) D0 /m
黏土 4 4 12 36 0.0001 0.9 6 20 50
表 2  土层物理力学参数
图 4  有限元与本研究方法计算位移对比
图 5  有限元与本研究方法计算弯矩对比
图 6  隧道-基坑相对位置示意图
土层 h /m γ /(kN?m?3) Es0.1?0.2 /MPa $\nu $
①人工填土 1.82 18.5 ? ?
②-1褐黄色粉质黏土 1.13 18.4 6.34 0.40
②-2灰黄色粉质黏土 0.82 17.7 4.43 0.30
③-1灰色淤泥质粉质黏土 1.08 17.7 4.43 0.30
③-2灰色砂质粉土 2.28 18.3 9.72 0.35
③-3灰色淤泥质粉质黏土 2.46 17.2 3.63 0.35
④灰色淤泥质黏土 8.70 16.6 2.27 0.35
⑤-1 灰色黏土 2.41 17.9 4.07 0.40
⑤-2灰色粉质黏 3.89 18.1 4.55 0.40
⑥暗绿草黄色粉质黏土 4.25 19.4 6.09 0.35
表 3  场地土层参数
图 7  上行线位移实测结果及计算结果对比曲线
图 8  下行线位移实测结果及计算结果对比曲线
图 9  隧道-基坑相对位置示意图
图 10  基坑与下卧隧道不同交角下隧道位移变化曲线
图 11  基坑与下卧隧道不同交角下隧道最大位移变化曲线
图 12  不同埋深下的隧道位移曲线
图 13  不同埋深下隧道最大位移曲线图
图 14  隧道与基坑不同间距下的隧道位移曲线
图 15  隧道与基坑不同间距下的隧道最大位移曲线
图 16  地基不同弹性模量下的隧道最大位移曲线
图 17  地基剪切层不同剪切刚度下隧道最大位移曲线
图 18  不同等效抗弯刚度下的隧道最大位移曲线
图 19  不同基坑开挖形状下的隧道位移曲线
图 20  基坑不同开挖形状下的隧道最大位移曲线
1 CHANG C T, SUN C W, DUANN S W, et al Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 151- 158
2 BRIAN S, PAUL J V Results of monitoring at the British Library excavation[J]. Geotechnical Engineering, 2014, 167 (2): 99- 116
3 魏纲, 李钢, 苏勤卫 基坑工程对运营地铁隧道影响的实测分析[J]. 现代隧道技术, 2014, 51 (1): 179- 185
WEI Gang, LI Gang, SU Qin-wei Analysis of the influence of foundation pit construction on an operating metro tunnel based on field measurement[J]. Modern Tunnelling Technology, 2014, 51 (1): 179- 185
4 魏纲 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34 (5): 1421- 1428
WEI Gang Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34 (5): 1421- 1428
5 ZHENG G, YANG X, ZHOU H, et al A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95 (3): 119- 128
6 ZHENG G, YANG X, ZHOU H, et al Reply to the discussion on“asimplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations” by Far et al[J]. Computers and Geotechnics, 2019, 109 (5): 297
7 NG C W W, SHI J, HONG Y Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50 (8): 874- 888
8 HUANG X, HUANG H, ZHANG D Centrifuge modelling of deep excavation overexisting tunnels[J]. Proceedings of the ICE- Geotechnical Engineering, 2012, 167 (1): 3- 18
9 程康, 徐日庆, 应宏伟, 等 既有隧道在上覆基坑卸荷下的形变响应简化算法[J]. 岩石力学与工程学报, 2020, 39 (3): 637- 648
CHNEG Kang, XU Ri-qing, YING Hong-wei, et al Simplified method for calculating the response of existing tunnel due to overlying basement excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (3): 637- 648
10 梁荣柱, 林存刚, 夏唐代, 等 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, (1): 228- 238
LIANG Rong-zhu, LIN Cun-gang, XIA Tang-dai, et al Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, (1): 228- 238
11 LIANG R Z, XIA T D, HUANG M S, et al Simplified method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167- 187
12 张治国, 黄茂松, 王卫东 邻近开挖对既有软土隧道的影响[J]. 岩土力学, 2009, 30 (5): 1373- 1379
ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong Responses of existing tunnels induced by adjacent excavation in soft soils[J]. Rock and Soil Mechanics, 2009, 30 (5): 1373- 1379
13 姜兆华, 张永兴 基坑开挖对邻近隧道纵向位移影响的计算方法[J]. 土木建筑与环境工程, 2013, 35 (1): 7- 11
JIANG Zhao-hua, ZHANG Yong-xing Calculation of influence on longitudinal deformation of adjacent tunnels due to excavation[J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35 (1): 7- 11
14 ZHANG Z, HUANG M, WANG W Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunneling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 38 (3): 244- 253
15 魏纲, 赵城丽 基坑开挖引起临近地铁隧道的附加荷载计算方法[J]. 岩石力学与工程学报, 2016, 35 (Suppl.1): 3408- 3417
WEI Gang, ZHAO Cheng-li Calculation method of additional load of adjacent metro tunnels due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (Suppl.1): 3408- 3417
16 广州地铁设计研究院有限公司. 城市轨道交通结构安全保护技术规范: GJJ/T 202—2013 [S]. 北京: 中国建筑工业出版社, 2013.
17 VESIC A S Bending of beams resting on isotropic elastic solid[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1961, 87 (2): 35- 53
18 ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunneling and their effects on pipelines and structures [M]. London: Blackie and Son Ltd, 1986: 128-132.
19 YU J, ZHANG C, HUANG M Soil-pipe interaction due to tunneling: assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50 (5): 17- 28
20 LIANG R, WU W, YU F, et al Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunneling and Underground Space Technology, 2018, 71: 94- 105
21 ZHANG Z, HUANG M, XU C, et al Simplified solution for tunnel-soil-pile interaction in Pasternak′s foundation model[J]. Tunneling and Underground Space Technology, 2018, 78: 146- 158
22 徐日庆, 程康, 应宏伟, 等 考虑埋深与剪切效应的基坑卸荷下卧隧道的形变响应[J]. 岩土力学, 2020, (Suppl.1): 195- 207
XU Ri-qing, CHNEG Kang, YING Hong-wei, et al Response of tunnel induced by pit excavation considering the tunnel shearing and depth effect[J]. Rock and Soil Mechanics, 2020, (Suppl.1): 195- 207
23 LIANG R, XIA T, HONG Y, et al Effects of above-crossing tunneling on the existing shield tunnels[J]. Tunneling and Underground Space Technology, 2016, 58: 159- 176
24 梁荣柱, 夏唐代, 胡军华, 等 新建隧道近距离上穿施工对既有地铁隧道纵向变形分析[J]. 岩土力学, 2016, 37 (Suppl.1): 391- 399
LIANG Rong-zhu, XIA Tang-dai, HU Jun-hua, et al Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.1): 391- 399
25 康成, 梅国雄, 梁荣柱, 等 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39 (12): 4605- 4616
KANG Cheng, MEI Guo-xiong, LIANG Rong-zhu, et al Analysis of the longitudinal deformation of existing shield tunnel induced by temporary surface surcharge[J]. Rock and Soil Mechanics, 2018, 39 (12): 4605- 4616
26 志波由纪夫, 川岛一彦, 大日方尚己, 等. 应答变位法にょるツ—ルドトンネルの地震时断面力の算定[C]// 土木学会论文集. 东京: 土木学会出版委员会, 1989: 385-394.
SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analysis [C]// Proceedings of the Japan Society of Civil Engineers. Tokyo: Publication Committee of Civil Engineering Society, 1989: 385-394.
27 TANAHASHI H Formulas for an infinitely long Bernoulli: Euler beam on thePasternak model[J]. Soils Foundation, 2004, 44 (5): 109- 118
28 徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
XU Ling. Study on the longitudinal settlement of shield tunnel in soft soil [D]. Shanghai: Tongji University, 2005.
29 张冬梅, 冉龙洲, 闫静雅, 等 注浆对盾构隧道渗漏引起的孔隙水压力变化的影响[J]. 岩土力学, 2017, 38 (12): 3427- 3435
ZHANG Dong-mei, RAN Long-zhou, YAN Jing-ya, et al Effect of grouting on tunnel leakage-induced pore pressure change in saturated soft soils[J]. Rock and Soil Mechanics, 2017, 38 (12): 3427- 3435
[1] 王灿,凌道盛,王恒宇. 软土结构性对基坑开挖及邻近地铁隧道的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 264-274.
[2] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[3] 梁荣柱, 宗梦繁, 康成, 吴文兵, 方宇翔, 夏唐代, 程康. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(3): 420-430.