计算机技术与图像处理 |
|
|
|
|
融合局部特征与深度学习的三维掌纹识别 |
杨冰(),莫文博,姚金良 |
杭州电子科技大学 计算机学院,浙江 杭州 310018 |
|
3D palmprint recognition by using local features and deep learning |
Bing YANG(),Wen-bo MO,Jin-liang YAO |
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
1 |
HUANG D, JIA W, ZHANG D Palmprint verification based on principal lines[J]. Pattern Recognition, 2008, 41 (4): 1316- 1328
doi: 10.1016/j.patcog.2007.08.016
|
2 |
FEI L, XU Y, TANG W, et al Double-orientation code and nonlinear matching scheme for palmprint recognition[J]. Pattern Recognition, 2016, 49 (1): 89- 101
|
3 |
ZHANG L, CHENG Z, SHEN Y, et al Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset[J]. Symmetry, 2018, 10 (4): 78
doi: 10.3390/sym10040078
|
4 |
白雪飞, 高楠, 张宗华, 等 基于分块ST与主成分分析的三维掌纹识别[J]. 天津大学学报: 自然科学与工程技术版, 2018, 51 (6): 631- 637 BAI Xue-fei, GAO Nan, ZHANG Zong-hua, et al Three dimensional palmprint identification based on blocked ST and PCA[J]. Journal of Tianjin University: Science and Technology, 2018, 51 (6): 631- 637
|
5 |
ZHANG L, SHEN Y, LI H, et al 3D palmprint identification using block-wise features and collaborative representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (8): 1730- 1736
doi: 10.1109/TPAMI.2014.2372764
|
6 |
YANG B, XIANG X, XU D, et al 3D palmprint recognition using shape index representation and fragile bits[J]. Multimedia Tools and Applications, 2017, 76 (14): 15357- 15375
doi: 10.1007/s11042-016-3832-1
|
7 |
FEI L, ZHANG B, XU Y, et al Precision direction and compact surface type representation for 3D palmprint identification[J]. Pattern Recognition, 2019, 87 (3): 237- 247
|
8 |
BAI X, GAO N, ZHANG Z, et al Person recognition using 3D palmprint data based on full-field sinusoidal fringe projection[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (9): 3287- 3298
doi: 10.1109/TIM.2018.2877226
|
9 |
KUHNEL W, HUNT B. Differential Geometry: Curves-Surfaces-Manifolds: 2nd ed [M]. New York: American Mathematical Society, 2006: 66-68.
|
10 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [C] // Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012: 1097-1105.
|
11 |
SZEGEDY, LIU W, JIA Y, et al. Going deeper with convolutions [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'15). Washington: IEEE Computer Society Press, 2015: 1-9.
|
12 |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv Preprint, arXiv: 1409.1556, 2014.
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [J]. arXiv Preprint, arXiv: 1512.03385, 2015.
|
14 |
LI W, ZHANG D, LU G, et al A novel 3D palmprint acquisition system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2012, 42 (2): 443- 452
doi: 10.1109/TSMCA.2011.2164066
|
15 |
ZHANG D, LU G, LI W, et al Palmprint recognition using 3-D information[J]. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews, 2009, 39 (5): 505- 519
doi: 10.1109/TSMCC.2009.2020790
|
16 |
XU Y, FEI L, WEN J, et al Discriminative and robust competitive code for palmprint recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48 (2): 232- 241
doi: 10.1109/TSMC.2016.2597291
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|