Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2342-2347    DOI: 10.3785/j.issn.1008-973X.2019.12.011
土木工程、水利工程     
海底碎屑流对海洋桩的冲击
李东黎1,2(),晏鄂川1,*(),冯斌3,蔡袁强3
1. 中国地质大学 工程学院,湖北 武汉 430000
2. 中铁第四勘察设计院集团有限公司,湖北 武汉 430000
3. 浙江工业大学 建筑工程学院,浙江 杭州 310014
Impact of submarine debris flow on offshore piles
Dong-li LI1,2(),E-chuan YAN1,*(),Bin FENG3,Yuan-qiang CAI3
1. Faculty of Engineering, China University of Geosciences, Wuhan 430000, China
2. China Railway Siyuan Survey and Design Group Co. LTD, Wuhan 430000, China
3. Department of Architecture Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1063 KB)   HTML
摘要:

通过改变坡度和高岭土的质量分数,进行12组模型试验. 采用H-B模型和幂率模型描述泥浆流变性质,得到适用于非牛顿流体的修正雷诺数;根据流体力学理论,建立无量纲阻力系数与非牛顿流体雷诺数之间的关系式. 结果表明:不同配比的泥浆黏度有较大的差异,采用幂率模型或H-B模型可以描述泥浆的剪切稀释特性. 桩身弯矩在水土界面处达到最大值,受到桩周土反力作用,桩身弯矩沿埋深减小;海洋桩的桩阻力系数随非牛顿流体雷诺数的增大而减小.

关键词: 海底碎屑流冲击桩基非牛顿流体H-B模型幂率模型    
Abstract:

Twelve sets of experiments were carried out by changing the slope and mass fraction of kaolin. The rheological properties of debris flow were described by H-B model and power rate model; the modified Reynolds number for non-Newtonian fluids was obtained. According to the theory of fluid mechanics, the relationship between the dimensionless drag coefficient and the Reynolds number of non-Newtonian fluid was established. Results show that the debris flow viscosity varies greatly among different proportions, and the shear dilution characteristics of the debris flow can be described by power-law model or H-B model. The bending moment of pile reaches the largest at the water-soil interface. Because of the soil reaction around the pile, the bending moment of pile decreases along the buried depth. The drag coefficient decreases with the increase of the Reynolds number of non-Newtonian fluids.

Key words: submarine debris flow    impact    pile    non-Newtonian fluids    H-B model    power rate model
收稿日期: 2018-10-26 出版日期: 2019-12-17
CLC:  TU 411  
基金资助: 国家社会科学基金资助项目(17BTQ069);浙江省自然科学基金资助项目(LY19F020007)
通讯作者: 晏鄂川     E-mail: 985203319@qq.com;13907199600@139.com
作者简介: 李东黎(1981—),男,硕士,从事高速铁路、普速铁路、重载铁路的勘察设计以及地灾和路基工程的设计. orcid.org/0000-0002-8536-9450. E-mail: 985203319@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李东黎
晏鄂川
冯斌
蔡袁强

引用本文:

李东黎,晏鄂川,冯斌,蔡袁强. 海底碎屑流对海洋桩的冲击[J]. 浙江大学学报(工学版), 2019, 53(12): 2342-2347.

Dong-li LI,E-chuan YAN,Bin FENG,Yuan-qiang CAI. Impact of submarine debris flow on offshore piles. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2342-2347.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2342

图 1  海底滑坡模型槽示意图
图 2  海底滑坡装置局部图
图 3  桩基试验方案示意图
泥浆编号 wc / % ws / % ww / % ρ /(kg·m?3
1 15 57 28 1 729
2 20 52 28 1 745
3 25 47 28 1 766
4 30 42 28 1 776
5 35 37 28 1 791
6 40 32 28 1 804
表 1  泥浆配比及参数
图 4  不同黏土质量分数下泥浆的流变曲线
泥浆编号 幂率模型 H-B 模型
1 ${\rm{\tau }} = 4.4{\dot \gamma ^{0.43}}$ ${\rm{\tau }} = 0.6 + 3.9{\dot \gamma ^{0.46}}$
2 ${\rm{\tau }} = 6.3{\dot \gamma ^{0.36}}$ ${\rm{\tau }} = 2.0 + 4.5{\dot \gamma ^{0.43}}$
3 ${\rm{\tau }} = 6.8{\dot \gamma ^{0.35}}$ ${\rm{\tau }} = 2.3 + 4.7{\dot \gamma ^{0.42}}$
4 ${\rm{\tau }} = 7.2{\dot \gamma ^{0.38}}$ ${\rm{\tau }} = 5.9 + 2.3{\dot \gamma ^{0.64}}$
5 ${\rm{\tau }} = 7.5{\dot \gamma ^{0.45}}$ ${\rm{\tau }} = 7.1 + 2.5{\dot \gamma ^{0.69}}$
6 ${\rm{\tau }} = 7.8{\dot \gamma ^{0.48}}$ ${\rm{\tau }} = 9.5 + 1.6{\dot \gamma ^{0.85}}$
表 2  不同黏土质量分数下泥浆的流变模型
图 5  桩身弯矩时程曲线
图 6  坡度为12°时的桩身实测弯矩
图 7  陆地滑坡下桩身弯矩
α 泥浆编号 u/(m·s?1 H/cm Re q/(N·m?1 Cd
12° 1 0.54 7.1 33.8 0.003 0 0.372
2 0.58 7.6 38.2 0.003 8 0.405
3 0.62 7.2 42.3 0.004 2 0.393
4 0.50 6.8 30.4 0.003 4 0.487
5 0.44 5.6 25.9 0.002 7 0.565
6 0.52 6.9 33.2 0.003 6 0.463
1 0.25 6.9 10.8 0.002 1 1.122
2 0.26 7.6 11.2 0.002 7 1.387
3 0.28 7.7 12.2 0.001 6 0.760
4 0.24 8.0 10.1 0.001 2 0.703
5 0.21 7.3 8.1 0.001 5 1.168
6 0.26 8.0 11.6 0.002 1 1.039
表 3  泥浆对桩均布力及相应参数
图 8  阻力系数与雷诺数的关系式(H-B流变模型)
1 LOCAT J, LEE H J Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 2002, 39 (39): 193- 212
2 BRUSCHI R, BUGHI S, SPINAZZE M, et al Impact of debris flows and turbidity currents on seafloor structures[J]. Norsk Geologisk Tidsskrift, 2006, 86 (3): 317- 336
3 吴时国, 陈珊珊, 王志君, 等 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 2008, (3): 430- 437
WU Shi-guo, CHEN Shan-shan, WANG Zhi-jun, et al Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 2008, (3): 430- 437
doi: 10.3969/j.issn.1000-8527.2008.03.013
4 李家钢, 修宗祥, 申宏, 等 海底滑坡块体运动研究综述[J]. 海岸工程, 2012, 31 (04): 67- 78
LI Jia-gang, XIU Zong-xiang, SHEN Hong, et al A review of the studies on submarine mass movement[J]. Coastal Engineering, 2012, 31 (04): 67- 78
doi: 10.3969/j.issn.1002-3682.2012.04.009
5 年廷凯, 刘敏, 刘博, 等 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 2016, 34 (04): 9- 15
NIAN Ting-kai, LIU Min, LIU Bo, et al Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 2016, 34 (04): 9- 15
6 HAZA Z F, HARAHAP I S H, DAKSSA L M Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base[J]. Natural Hazards, 2013, 68 (2): 587- 611
doi: 10.1007/s11069-013-0643-9
7 FALLICK A E Implications of linearly correlated oxygen and hydrogen isotopic compositions for kaolinite and illite in the Magnus sandstone, North Sea[J]. Clays and Clay Minerals, 1993, 41 (2): 184- 190
doi: 10.1346/CCMN.1993.0410207
8 MOHRIG D, ELVERH?I A, PARKER G Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits[J]. Marine Geology, 2015, 154 (1–4): 117- 129
9 ELVERHOI A, BREIEN H, BLASIO F V D, et al Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit[J]. Ocean Dynamics, 2010, 60 (4): 1027- 1046
doi: 10.1007/s10236-010-0317-z
10 SAWYER D E, FLEMINGS P B, BUTTLES J, et al Mudflow transport behavior and deposit morphology: role of shear stress to yield strength ratio in subaqueous experiments[J]. Marine Geology, 2012, 307-310 (3): 28- 39
11 THIERRY M, JAN A The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48 (2): 269- 299
doi: 10.1046/j.1365-3091.2001.00360.x
12 PAZWASH H, ROBERTSON J M Forces on bodies in Bingham fluids[J]. Journal of Hydraulic Research, 1975, 13 (1): 35- 55
doi: 10.1080/00221687509499719
13 RANDOLPH M F, WHITE D J Interaction forces between pipelines and submarine slides: a geotechnical viewpoint[J]. Ocean Engineering, 2012, 48 (7): 32- 37
14 ZAKERI A, H?EG K, NADIM F Submarine debris flow impact on pipelines. Part I: experimental investigation[J]. Coastal Engineering, 2008, 55 (12): 1209- 1218
doi: 10.1016/j.coastaleng.2008.06.003
15 ZAKERI A, HAWLADER B, CHI K Drag forces caused by submarine glide block or out-runner block impact on suspended (free-span) pipelines[J]. Ocean Engineering, 2012, 47 (none): 50- 57
16 ZAKERI A, H?EG K, Nadim F Submarine debris flow impact on pipelines. Part Ⅱ: numerical analysis[J]. Coastal Engineering, 2009, 56 (1): 1- 10
doi: 10.1016/j.coastaleng.2008.06.005
17 郑志昌, 陈俊仁, 朱照宇 南海海底土体物理力学特征及其地质环境初步研究[J]. 水文地质工程地质, 2004, (4): 50- 53
ZHENG Zhi-chang, CHEN Jun-ren, ZHU Zhao-yu Physical and mechanical characteristics of seabed soils and its geological environment in South China Sea[J]. Hydrogeology and Engineering Geology, 2004, (4): 50- 53
doi: 10.3969/j.issn.1000-3665.2004.04.008
18 王淼, 吴云青, 苏萌, 等 单桩式基础应用于我国海上风电的可行性探讨[J]. 电力建设, 2013, 34 (4): 63- 66
WANG Miao, WU Yun-qing, SU Meng, et al Application of single pile foundation in offshore wind power in China[J]. Electric Power Construction, 2013, 34 (4): 63- 66
doi: 10.3969/j.issn.1000-7229.2013.04.013
19 王腾, 王天霖 粉土p-y曲线的试验研究[J]. 岩土力学, 2009, 30 (5): 1343- 1346
WANG TENG, WANG TIAN-LIN Experimental research on silt p-y curves[J]. Rock and Soil Mechanics, 2009, 30 (5): 1343- 1346
doi: 10.3969/j.issn.1000-7598.2009.05.027
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 吴君涛,王奎华,刘鑫,孙梵. 基于既有桩基振动理论反演的桩周土动态响应解[J]. 浙江大学学报(工学版), 2020, 54(3): 521-528.
[3] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[4] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[5] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[6] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[7] 陈贤, 杨建华, 周一览, 舒晓武. 光纤陀螺纯滞后测试系统的设计与实现[J]. 浙江大学学报(工学版), 2018, 52(4): 781-787.
[8] 丁会明, 吴英哲, 郑津洋, 陈朝晖, 尹立军. S30408焊接接头低温力学性能试验[J]. 浙江大学学报(工学版), 2018, 52(2): 217-223.
[9] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[10] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[11] 欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.
[12] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[13] 孙伟, 杜家楠, 王林涛, 马宏辉. 盾构管片拼装机电液系统高速-低冲击控制方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1948-1958.
[14] 童水光, 贾亚萍, 余跃, 唐宁, 谢国生, 沈强, 从飞云. 动点间歇性冲击变形计算方法的研究[J]. 浙江大学学报(工学版), 2017, 51(1): 124-130.
[15] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.