自动化技术 |
|
|
|
|
基于混合学习策略的教与学优化算法 |
毕晓君, 王佳荟 |
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001 |
|
Teaching-learning-based optimization algorithm with hybrid learning strategy |
BI Xiao-jun, WANG Jia-hui |
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China |
引用本文:
毕晓君, 王佳荟. 基于混合学习策略的教与学优化算法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.024.
BI Xiao-jun, WANG Jia-hui. Teaching-learning-based optimization algorithm with hybrid learning strategy. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.024.
|
参考文献(References):
[1] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems [J]. Computer-aid Design, 2011, 43 (3): 303-315.
[2] RAO R V, PATEL V. Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm [J]. Applied Mathematical Modelling, 2013, 37(3): 1147-1162.
[3] ZOU F, WANG L, HEI X H, et al. Teachinglearningbased optimization with dynamic group strategy for global optimization [J]. Information Sciences, 2014, 273: 112-131.
[4] 俞欢军,张丽平,陈德钊,等.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报:工学版,2005, 39(9): 12861291.
YU Huan-jun, ZHANG Li-ping, CHEN De-zhao, et al. Adaptive particle swarm optimization algorithm based on feedback mechanism [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(9): 1286-1291.
[5] ZOU F, CHEN D, WANG J T. An improved teaching-learning-based optimization with the social character of pso for global optimization [J]. Computational Intelligence & Neuroscience, 2016, 2016(2): 1-10.
[6] 高立群,欧阳海滨,孔祥勇,等.带有交叉操作的教-学优化算法[J].东北大学学报:自然科学版,2014, 35(3): 323-327.
GAO Li-qun, OUYANG Hai-bin, KONG Xiang-yong, et al. Teaching-learning based optimization algorithm with crossover operation [J]. Journal of Northeastern University :Natural Science, 2014,35(3): 323-327.
[7] 李会荣,乔希民,赵鹏军.融合差分变异的教-学优化算法[J].计算机工程与应用,2016,52(5): 36-40.
LI Hui-rong, QIAO Xi-min, ZHAO Peng-jun. Teaching-learning-based optimization algorithm by using differential mutation [J]. Computer Engineering and Applications, 2016, 52(5): 36-40.
[8] CHEN D B, ZOU F, LI Z, et al. An improved teaching-learning-based optimization algorithm for solving global optimization problem [J]. Information Sciences, 2015, 297: 171-190.
[9] 刘前进,许慧铭,施超,等.改进教与学方法在电力系统无功优化中的应用研究[J].电力系统保护与控制,2015, 43(9): 82-88.
LIU Qian-jin, XU Hui-ming, SHI Chao, et al. Research on modified teaching-learning algorithm for reactive power optimization [J]. Power System Protection and Control, 2015,43(9): 82-88.
[10] 匡芳君.群智能混合优化算法及其应用研究[D].南京:南京理工大学,2014.
KUANG Fang-jun. Hybridized optimization algorithms of swarm intelligence and their application [D]. Nanjing : Nanjing University, 2014.
[11] CHEN D B, ZOU F, WANG J T, et al. A teaching-learning-based optimization algorithm with producer-scrounger model for global optimization [J]. Soft Computing, 2015, 19(3): 745-762.
[12] PRINCE K, STORN R M, LAMPINEN J A. Differential evolution: a practical approach to global optimization :natural computing series[J]. Natural Computing, 2005, 141(2): 1-24.
[13] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art [J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
[14] YAO X, LIU Y, LIN G M. Evolutionary programming made faster [J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
[15] SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Singapore: NanyangTechnological University,2005.
[16] 韩俊英,刘成忠,王联国.动态双子群协同进化果蝇优化算法[J].模式识别与人工智能,2013,26 (11):1057-1067.
HAN Ying-jun, LIU Cheng-zhong, WANG Lian-guo. Dynamic double subgroups cooperative fruit fly optimizationg algorithm [J]. Pattern Recognition and Artificial Intelligence, 2013, 26 (11): 1057-1067. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|