Please wait a minute...
浙江大学学报(工学版)
自动化技术、电信技术     
面向移动终端人机交互的指尖点击力
杨文珍, 张昊, 吴新丽, 邵明朝, 金中正
浙江理工大学虚拟现实实验室,浙江 杭州 310018
Fingertip tapping force analysis for mobile devices HCI
YANG Wen zhen, ZHANG Hao, WU Xin li, SHAO Ming chao, JIN Zhong zheng
Virtual Reality Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(2193 KB)   HTML
摘要:

为了实现智能移动终端基于指尖力的自然人机交互,以指尖点击交互为研究对象,按3种指尖点击力(轻点击力、正常点击力和重点击力)开展实验研究,探究指尖点击交互时点击力和点击面积的内在机理,试图依据指尖点击面积区别出这3种点击力的交互行为.实验结果如下:1) 大拇指、食指、中指和无名指都能够施加有明显区分度的轻点击力、正常点击力和重点击力,特别是对轻点击力均有很好的控制能力;2) 点击力和点击面积之间不存在满映射关系,但是存在强相关性;3) 依据点击面积可以很好地区分出指尖的轻点击力和重点击力.

Abstract:

Three type tapping forces (gentle tapping force, normal tapping force and heavy tapping force) and their corresponding tapping contact areas were measured and analyzed to explore the fingertip tapping forces interaction behaviors in order to realize the natural human-computer interaction (HCI) on the smart mobile devices by fingertip forces. Experimental results were as follows. 1) Thumb, index finger, middle finger, and ring finger have strong abilities to control their fingertip forces with gentle, normal, and heavy tapping actions, and more clearly. Every finger can act precise general tapping forces. 2) The gentle tapping force and the heavy tapping force can be definitely recognized by their tapping contact areas, although there is no exact full mapping correlations between the tapping forces and the tapping contact areas. 3) In some extents, three types tapping forces can be distinguished by their corresponding tapping contact areas.

出版日期: 2016-10-28
:  TP 391  
基金资助:

 浙江省自然科学基金资助项目(LY14F020048);浙江省科技厅公益资助项目(2016C33174);国家自然科学基金资助项目(61332017);国家“863”高技术研究发展计划资助项目(2013AA013703).

作者简介: 杨文珍(1976—),男,副教授,从事人机交互和机器人的研究. ORCID: 0000-0002-0068-1497. E-mail: ywz@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨文珍, 张昊, 吴新丽, 邵明朝, 金中正. 面向移动终端人机交互的指尖点击力[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.021.

YANG Wen zhen, ZHANG Hao, WU Xin li, SHAO Ming chao, JIN Zhong zheng. Fingertip tapping force analysis for mobile devices HCI. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.021        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/1995

[1] HEO S, GU J, LEE G. Expanding touch input vocabulary by using consecutive distant taps [C]∥ ACM Conference on Human Factors in Computing Systems. Toronto: ACM, 2014: 2597-2606.
[2] ARIF A S, MAZALEKA, STUERZLINGER W. The use of pseudo pressure in authenticating smartphone users [C] ∥ MOBIQUITOUS’14. London: IEEE, 2014: 151-160.
[3] HEO S, LEE G. Force gestures: augmented touch screen gestures using normal and tangential force[C] ∥ UIST’11. New York: ACM, 2011: 621-626.
[4] LEE B, LEE H, LIM S, et al. Evaluation of human tangential force input performance [C]∥ ACM Conference on Human Factors in Computing Systems. New York: ACM, 2012: 3121-3130.
[5] STEWART C, ROHS M, KRATZ S, et al. Characteristics of pressurebased input for mobile devices [C]∥ ACM Conference on Human Factors in Computing Systems. Atlanta: ACM, 2010: 801-810.
[6] STEWART C, HOGGAN E, HAVERINEE L, et al. An exploration of inadvertent variations in mobile pressure input [C] ∥ MobileHCI’12. San Francisco: ACM, 2012: 15.
[7] HEO S, HAN J, LEE G. Designing rich touch interaction through proximity and 2.5D force sensing touchpad [C]∥ Australian ComputerHuman Interaction Conference: Augmentation, Application, Innovation, Collaboration. New York: ACM, 2013: 401-404.
[8] JOHN W, REN D, CHRISTOPHER W, et al. Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a threedimensional hybrid model [J]. Medical Engineering and Physics, 2014, 36 (7): 831-841.
[9] HEO P, KIM J. Finger flexion force sensor based on volar displacement of flexor tendon [C]∥ ICRA’12. Saint Paul: IEEE, 2012: 1392-1397.
[10] ODAGAKI M, TAURA T, HARAKAWA T. Touch interface for sensing fingertip forcein mobile device using electromyogram [C]∥ EMBS’13. Osaka: IEEE, 2013: 3443-3446.
[11] LIU P, MARTEL F, RANCOURT D, et al. Fingertip force estimation from forearm muscle electrical activity [C]∥ ICASSP’14. Florence: IEEE, 2014: 2069-2073.
[12] MASCARO S A, ASADA H. Measurement of finger posture and threeaxis fingertip touch force using fingernail sensors [J]. IEEE Transactions on Robotics and Automation, 2004, 2(1): 26-35.
[13] CHEN N, URBAN S, BAYER, et al. Measuring fingertip forces from camera images for random fingerposes [C]∥ IROS’15. Hamburg: IEEE, 2015: 16.
[14] HWANG S, BIANCHI A, WOHN K Y. Vibpressestimation pressure input using vibration absorption on mobile devices [C]∥ MobileHCI′13. Munich: ACM, 2013: 27-30.
[15] KURITA Y, IKEDA A, UEDA J, et al. A fingerprint pointing device utilizing the deformation of the fingertip during the incipient slip [J]. IEEE Transaction onRobotics, 2005, 21 (5): 801-811.
[16] SONEDA T, NAKANO K. Investigation of vibrotactile sensation of human fingerpads by observation of contact zones [J]. International Tribology, 2010,43(1): 210-217.
[17] AKIHITO K, TSUJI T, KURITA Y. Fingertip force estimation based on the deformation of the fingertip [M]∥ HIROYUKI K, HIDEYUKI A, KIUK K. Haptic interaction. Japan: Springer, 2015: 201-205.
[18] 杨文珍, 高曙明, 万华根, 等. 基于人手指力学特性的虚拟手接触力生成[J]. 浙江大学学报:工学版, 2008, 42(12): 2145-2150.
YANG Wenzhen, GAO Shuming, WAN Huagen, et al. Contact force rendering of virtual hand interaction based on human fingers’ force characteristics [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(12): 2145-2150.

[1] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[2] 王桦, 韩同阳, 周可. 公安情报中基于关键图谱的群体发现算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1173-1180.
[3] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[4] 毕晓君, 王佳荟. 基于混合学习策略的教与学优化算法[J]. 浙江大学学报(工学版), 2017, 51(5): 1024-1031.
[5] 黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 2017, 51(4): 655-662.
[6] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[7] 王亮, 於志文, 郭斌. 基于双层多粒度知识发现的移动轨迹预测模型[J]. 浙江大学学报(工学版), 2017, 51(4): 669-674.
[8] 廖苗, 赵于前, 曾业战, 黄忠朝, 张丙奎, 邹北骥. 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报(工学版), 2017, 51(4): 722-728.
[9] 穆晶晶, 赵昕玥, 何再兴, 张树有. 基于凹凸变换与圆周拟合的重叠气泡轮廓重构[J]. 浙江大学学报(工学版), 2017, 51(4): 714-721.
[10] 戴彩艳, 陈崚, 李斌, 陈伯伦. 复杂网络中的抽样链接预测[J]. 浙江大学学报(工学版), 2017, 51(3): 554-561.
[11] 刘磊, 杨鹏, 刘作军. 采用多核相关向量机的人体步态识别[J]. 浙江大学学报(工学版), 2017, 51(3): 562-571.
[12] 郭梦丽, 达飞鹏, 邓星, 盖绍彦. 基于关键点和局部特征的三维人脸识别[J]. 浙江大学学报(工学版), 2017, 51(3): 584-589.
[13] 王海军, 葛红娟, 张圣燕. 基于核协同表示的快速目标跟踪算法[J]. 浙江大学学报(工学版), 2017, 51(2): 399-407.
[14] 张亚楠, 陈德运, 王莹洁, 刘宇鹏. 基于增量图形模式匹配的动态冷启动推荐方法[J]. 浙江大学学报(工学版), 2017, 51(2): 408-415.
[15] 刘宇鹏, 乔秀明, 赵石磊, 马春光. 统计机器翻译中大规模特征的深度融合[J]. 浙江大学学报(工学版), 2017, 51(1): 46-56.