Please wait a minute...
浙江大学学报(工学版)
自动化技术、电信技术     
芯片级PHEMT热特性等效方法
徐秀琴, 莫炯炯, 王志宇, 尚永衡, 郭丽丽, 郁发新
浙江大学 航空航天学院,浙江 杭州 310027
Equivalent method of GaAs PHEMT MMIC for thermal simulation
XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng,GUO Li li, YU Fa xin
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1388 KB)   HTML
摘要:

为了准确估计砷化镓赝配高电子迁移率晶体管(PHEMT)的单片微波集成电路(MMIC)的热特性,提出芯片级PHEMT的热特性等效方法.该方法通过PHEMT管芯结构等效,引入芯片版图和过孔的热扩散效应,建立芯片级热仿真模型,可以在不改变管芯横向热分布的情况下,大幅简化仿真模型的网格,有效提高芯片级管芯峰值温度的仿真精度和仿真速度.基于该热特性等效方法,在ANSYS ICEPAK中对一颗GaAs PHEMT MMIC(单片微波集成电路)功率放大器芯片和一颗GaAs PHEMT MMIC驱动放大器芯片进行建模和仿真.运用红外热成像仪对两颗芯片温度进行实测,仿真与实测的芯片PHEMT峰值温度具有良好的一致性.基于该芯片级PHEMT热特性等效方法可知,芯片热仿真所得的峰值温度与实测结果的误差控制在2%之内.

Abstract:

An equivalent method for thermal characterizing of GaAs PHEMT on chip level was proposed in order to evaluate the thermal characteristics of GaAs PHEMT MMIC. A chip-level thermal simulation model was established by introducing equivalent structure of PHEMT and considering the thermal dissipation effect contributed by chip layout and vias. The model can keep the original lateral thermal distribution of transistors, substantially simplify the mesh of the simulation model, and effectively enhance the accuracy and speed of peak temperature simulation for transistors on chip level. Then a GaAs PHEMT MMIC power amplifier and a GaAs PHEMT MMIC driver amplifier were modeled and simulated in ANSYS ICEPAK as examples. Infrared thermography was applied to map the temperature distribution of the two MMICs. The simulated peak temperatures accorded with the measured ones. The peak temperature difference between the measurement and the thermal simulation was within 2% by applying the proposed thermal analysis method.

出版日期: 2016-10-28
:  TN 7  
基金资助:

国家自然科学基金资助项目(61401395);浙江省教育厅资助项目(Y201533913);中央高校基本科研业务费专项资助项目(2016QNA4025, 2016QN81002).

通讯作者: 莫炯炯,女,讲师. ORCID: 0000-0002-5613-7706.     E-mail: jiongjiongmo@zju.edu.cn
作者简介: 徐秀琴(1989—),女,博士生,从事MMIC芯片热特性的研究. ORCID: 0000-0003-0430-4725. E-mail: xiuqinxu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐秀琴, 莫炯炯, 王志宇, 尚永衡, 郭丽丽, 郁发新. 芯片级PHEMT热特性等效方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.022.

XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng,GUO Li li, YU Fa xin. Equivalent method of GaAs PHEMT MMIC for thermal simulation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.022.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.022        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/2002

[1] PARKER A E. Broadband characterization of FET selfheating [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(7): 2424-2429.
[2] VASILESKA D, HOSSAIN A, GOODNICK S M. The interplay of self heating effects and static Rtf in nanowire transistors [C]∥ Silicon Nanoelectrnics Workshop. Honolulu: [s.n.], 2012: 12.
[3] CAMARCHIA V, CAPPELLUTI F, PIROLA M, et al. Self consistent electrothermal modeling of class A, AB and B power GaN HEMTs under modulated RF excitation [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(9): 1824-1831.
[4] WANG X, HU W, CHEN X, et al. The study of selfheating and hotelectron effects for AlGaN/GaN doublechannel HEMTs [J]. IEEE Transactions on ElectronDevices, 2012, 59(5): 1393-1401.
[5] FATTORINI A P, TARAZI J, MAHON S. Channel temperature estimation in GaAs FET devices[C] ∥ 2010 IEEE MTTS International Microwave Symposium Digest (MTT). Anaheim: IEEE, 2010: 320-323.
[6] FRANCIS D, WASSERBAUER J, FAILI F, et al. GaN HEMT Epilayers on diamond substrates [C]∥ Proceeding CS MANTECH. Austin: [s. n.], 2007: 14-17.
[7] MENOZZI R, UMANAMEMBRENO G A, NENER B D, et al. Temperaturedependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances [J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 255-264.
[8] HORCAJO S M, WANG A, ROMERO M F, et al. Simple and accurate method to estimate channel temperature and thermal resistance in AlGaN/GaN HEMTs [J]. IEEE Transactions on Electron Devices, 2013,60(12): 4105-4111.
[9] DARWISH A M, BAYBA A, HUNG H A. Utilizing diode characteristics for GaN HEMT channel temperature prediction [J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 3188-3192.
[10] BERTOLUZZA F, DELMONTE N, MENOZZI R, et al. Threedimensional finite element thermal simulation of GaNbased HEMTs [J]. Microelectron Reliability, 2009, 49(5): 468-473.
[11] AUBRY R, JACQUET J C, WEAVER J, et al. SThM temperature mapping and nonlinearthermalresistance evolution with bias on AlGaN/GaN HEMT devices [J]. IEEE Transactions on Electron Devices, 2007, 54(3): 385-390.
[12] DARWISH A M, BAYBA A J, KHORSHID A, et al. Calculation of the nonlinear junction temperature for semiconductor devices using linear temperature values [J]. IEEE Transactions on Electron Devices, 2012,59(8): 2123-2128.
[13] ZHAO M, LIU X, ZHENG Y, et al. Thermal analysis of AlGaN/GaN highelectronmobility transistors by infrared microscopy [J]. Optics Communications, 2013, 291: 104-109.
[14] ZHANG G, FENG S, ZHANG Y, et al. Study on the chiplevel thermal nonuniformity evaluation of semiconductor devices [C] ∥ 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. Suzhou: IEEE, 2009: 541-544.
[15] PETROSYANTS K O, TORGOVNIKOV R A. Electrothermal modeling of trenchisolated SiGe HBTsusing TCAD [C] ∥ 2015 31st Thermal Measurement, Modeling and Management Symposium. San Jose: IEEE, 2015: 172-175.
[16] YUAN L, WANG W, LEE K B, et al. The temperature dependent TCAD and SPICE modeling of ALGaN/GaN HEMTs [C]∥ 2013 IEEE 5th International Nanoelectronics Conference. Singapore: IEEE, 2013.
[17] ZHANG Y, FENG S, ZHU H, et al. Assessment of pulse condition effects on reliability in GaNbased high electron mobility by transient temperature measurements [J]. Journal of Applied Physics, 2013, 114(9): 094-516.
[18] LEE W S, HAN I Y, YU J, et al. Thermal characterization of thermally conductive underfill for a flipchip package using novel temperature sensing technique[C]∥ Proceedings of 6th Electronics Packaging Technology Conference. Singapore: [s.n.], 2004: 47-52.
[19] FLEISCHER A S, CHANG L, JOHNSON B C. The effect of die attach voiding on the thermal resistance of chip level packages [J]. Microelectronics Reliability, 2006, 46(5): 794-804.
[20] LEE W S, BYUN K Y. The availability of the thermal resistance model in flipchip packages [C]∥ International Conference on Electronic Materials and Packaging. Daejeon: IEEE, 2007: 15.
[21] KANDASAMY R, MUJUMDAR A S. Thermal analysis of a flip chip ceramic ball grid array (CBGA) package [J]. Microelectronics Reliability, 2008, 48(2):261-273.
[22] ASGHARI T A. PCB thermal via optimization using design of experiments [C]∥ The 10th Intersociety Conference on Thermal and Thermalmechanical Phenomena in Electronics Systems. San Diego: [s. n.], 2006:224-228.
[23] BOUKHANOUF R, HADDAD A. A CFD analysis of an electronics cooling enclosure for application in telecommunication systems [J]. Applied Thermal Engineering, 2010, 30(16): 2426-2434.
[24] SIMMS R J T, POMEROY J W, UREN M J, et al. Channel temperature determination in highpower AlGaN/GaN HFETs using electrical methods and Raman spectroscopy [J]. IEEE Transactions on ElectronDevices, 2008, 55(2): 478-482.
[25] LI L, COCCIOLI R, NARY K, et al. Multiscale thermal analysis of GaAs RF device [C]∥ IEEE 21st Annual Semiconductor Thermal Measurement and Management Symposium. San Jose: IEEE, 2005: 259-263.
[26] DARWISH A M, BAYBA A J, HUNG H A. Accurate determination of thermal resistance of FETs [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(1): 306-313

[1] 童华清, 许石义, 黄剑华, 莫炯炯, 王志宇, 郁发新. 带有源偏置的系统级封装低噪声放大器模块[J]. 浙江大学学报(工学版), 2017, 51(4): 834-840.
[2] 许慧, 徐秀琴, 莫炯炯, 王志宇, 尚永衡, 王立平, 郁发新. 基于耦合模理论的强阻带抑制带通滤波器设计[J]. 浙江大学学报(工学版), 2017, 51(1): 177-183.
[3] 张胜洲,孙玲玲,文进才,刘军. 漏/阻双模高性能D波段无源混频器[J]. 浙江大学学报(工学版), 2016, 50(9): 1815-1822.
[4] 展永政, 王光庆. 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报(工学版), 2014, 48(7): 1248-1253.
[5] 冯霞,钟晓剑,徐群伟,陈国柱. 新型三相四线制APF直流电压控制策略[J]. 浙江大学学报(工学版), 2014, 48(7): 1312-1317.
[6] 赵岩, 孙玲玲, 谭年熊. 用于谐波测量的非均匀同步采样时钟产生方法[J]. J4, 2013, 47(10): 1857-1862.
[7] 朱福成, 李凤保, 雷晓燕, 郭锋. 延迟双稳系统中乘性和加性噪声诱导的随机共振[J]. J4, 2013, 47(1): 88-93.
[8] 白杨, 杨家强, 曾争. 谐波检测算法中高性能数字低通滤波器的设计[J]. J4, 2013, 47(1): 169-173.
[9] 尹喜珍, 马成炎, 叶甜春, 肖时茂, 于云丰. 高灵敏度GNSS接收机频率合成器设计[J]. J4, 2013, 47(1): 70-76.
[10] 汪鹏君, 李昆鹏, 梅凤娜, 陈耀武. 三值绝热计数器的开关级设计[J]. J4, 2011, 45(8): 1502-1508.
[11] 谢川, 张靖, 王智强, 陈国柱. 适于重复控制固定采样点数的数字锁相方法[J]. J4, 2011, 45(5): 789-793.
[12] 黄晓华,陈李佳,周金芳,陈抗生. CMOS低噪声放大器Miller效应分析与噪声优化[J]. J4, 2011, 45(3): 424-428.