Please wait a minute...
浙江大学学报(工学版)
自动化技术、通信工程     
漏/阻双模高性能D波段无源混频器
张胜洲,孙玲玲,文进才,刘军
1. 浙江大学 电气工程学院超大规模集成电路设计研究所, 浙江 杭州 310027;
2. 杭州电子科技大学 教育部射频电路与系统重点实验室,浙江 杭州 310018; 
3. 杭州电子科技大学 浙江省大规模集成电路重点实验室,浙江 杭州 310018
High performance D-band passive mixer in dual drain/resistive modes
ZHANG Sheng zhou, SUN Ling ling, WEN Jin cai, LIU Jun
1. Institute of VLSI Design, College of Electrical Engineering, Zhejiang University, Hangzhou, 310027, China;
2. Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou, 310018, China;
3. Zhejiang Province Laboratory of Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou, 310018, China
 全文: PDF(1300 KB)   HTML
摘要:

介绍一种基于70 nm砷化镓变晶性高电子迁移率晶体管(mHEMT)工艺的漏/阻双模、高性能D波段无源混频器.该单片集成基波混频器采用共面波导(CPW)实现.为了保证电路高频设计的准确性,对共面波导进行电磁场仿真建模.采用谐波平衡法对漏极、阻性2种状态的端口大信号阻抗进行仿真分析,设计出射频(RF)和本振(LO)信号共用的匹配网络.测试结果表明:在漏极状态下,当射频频率从110 GHz变化到150 GHz、中频频率固定为1 GHz、本振信号功率设置为3 dBm时,转换增益位于-4.4 ~ -11.6 dB|在阻性状态下,当射频频率从110 GHz变化到150 GHz、中频频率固定为1 GHz、本振信号功率设置为0 dBm时,转换增益位于-8.0 ~ -18.6 dB.包含焊盘在内,芯片面积为0.86 mm× 0.43 mm.

Abstract:

The design and characterization of a high performance D-band dual drain/resistive modes mixer were presented, which was in a 70 nm GaAs metamorphic high electron mobility transistor (mHEMT) process. The monolithic single-ended fundamental mixer was fabricated in coplanar waveguide (CPW) technology. CPWs were modeled by the full-wave electromagnetic field simulation to ensure the accuracy of high-frequency design. Matching networks were designed for both radio frequency (RF) and local oscillator (LO) signals according to the large signal impedance of dual drain/resistive models simulated by harmonic balance method. As indicated, for drain mode, a conversion gain over the 110 to 150 GHz frequency range was measured between -4.4 and -11.6 dB with intermediate frequency (IF) targeted at 1 GHz and LO power fixed of 3 dBm. In case of resistive mode, the proposed mixer performed a conversion gain from -8.0 to -18.6 dB for a wide operational bandwidth from 110 to 150 GHz, under 1 GHz IF frequency and 0 dBm LO power. The compact chip size is 0.86 mm × 0.43 mm with pads included.

出版日期: 2016-09-22
:  TN 773.2  
基金资助:

国家自然科学基金资助项目 (61331006, 60906015); 浙江省自然科学基金资助项目(LY16F040004).

通讯作者: 孙玲玲,女,教授,博导.     E-mail: sunll@hdu.edu.cn
作者简介: 张胜洲(1983-),男,博士生,从事微波、毫米波集成电路及系统设计研究. ORCID: 0000-0002-9772-7008. E-mail: szzhang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张胜洲,孙玲玲,文进才,刘军. 漏/阻双模高性能D波段无源混频器[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.09.24.

ZHANG Sheng zhou, SUN Ling ling, WEN Jin cai, LIU Jun. High performance D-band passive mixer in dual drain/resistive modes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.09.24.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.09.24        http://www.zjujournals.com/eng/CN/Y2016/V50/I9/1815

[1] 张勇,卢秋全,刘伟,等.基于肖特基势垒二极管三维电磁模型的220 GHz 三倍频器[J].红外与毫米波学报,2014,33(4): 405-411.
ZHANG Yong, LU Qiuquan, LIU Wei, et al. Design of a 220 GHz frequency tripler based on EM model of schottky diodes [J]. Journal of Infrared and Millimeter Waves, 2014, 33(4):  405-411.
[2] 郭健,许正彬,钱澄,等.基于石英基片工艺的D频段平衡式二倍频器设计[J].红外与毫米波学报,2012,31(6): 491-496.
GUO Jian, XU Zhengbin, QIAN Cheng, et al. Design of a Dband balanced frequency doubler with quartz substrate [J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 491-496.
[3] 孟进,张德海,蒋长宏,等.225 GHz 三倍频器实用设计方法[J].红外与毫米波学报,2015,34(2): 190-195.
MENG Jin, ZHANG Dehai, JIANG Changhong, et al. Research on the practical design method of 225 GHz tripler [J]. Journal of Infrared and Millimeter Waves, 2015, 34 (2): 190-195.
[4] LOPEZ D D, KALLFASS I, TESSMANN A, et al. A balanced resistive 210 GHz mixer with 50 GHz IF bandwidth [C]∥ European Microwave Integrated Circuits Conference (EuMIC). Paris: IEEE, 2010: 190-193.
[5] YAN Y, KARANDIKAR Y B, GUNNARSSON S E, et al. Monolithically integrated 200GHz doubleslot antenna and resistive mixers in a GaAsmHEMT MMIC process [J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59 (10): 2494-2503.
[6] GUNNARSSON S E, WADEFALK N, ANGELOV I, et al. A Gband (140220 GHz) microstrip MMIC mixer operating in both resistive and drainpumped mode [C]∥ MTTS International Microwave Symposium Digest. Atlanta: IEEE, 2008: 15-20.
[7] SHOICHI S, MASARU S, HIROSHI M, et al. An Fband mixer module with a builtin broadband IF amplifier for spectrum analysis with low intermodulation distortion [C]∥ International Microwave and RF Conference. Bangalore: IEEE, 2014: 270-273.
[8] SHOICHI S, MASARU S, HIROSHI M, et al. An Fband fundamental mixer using 75nm InP HEMTs for precise spec trum analysis [C]∥ European Microwave Integrated Circuits Conference. Nuremberg: IEEE, 2013: 137-141.
[9] 安大伟,于伟华,吕昕.基于石英基片的二毫米波段二次谐波混频器设计和研制[J].红外与毫米波学报,2011,30(1): 123-127.
AN Dawei, YU Weihua, LV Xin. Design and fabrication of a 2 mmband subharmonic mixer based on quartz [J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 123-127.
[10] ZHANG B, FAN Y, CHEN Z, et al. An improved 110~130 GHz fix tuned subharmonic mixer with compact microstrip resonant cell structure [J]. Journal of Electromagnetic Waves and Applications, 2011, 25(2/3): 411-420.
[11] WANG C, LIN C X, CHEN Q, et al. A 10 Gbit/s wireless communication link using 16QAM modulation in 140GHz band [J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(7): 2737-2746.
[12] 姚常飞,周明,罗运生,等.基于肖特基势垒二极管的太赫兹固态倍频源和检测器研制[J].电子学报,2013,41(3): 438-443.
YAO Changfei, ZHOU Ming, LUO Yunsheng, et al. Developments of terahertz frequency solid state multiply sources and sensors with schottky barrier diodes [J]. Acta Electronica Sinica, 2013, 41(3): 438-443.
[13] 代秀,姜万顺,朱伟峰.1 mm谐波混频器设计[C]∥第一届全国太赫兹技术学术会议,成都:[s. n.],2012:13.
DAI Xiu, JIANG Wanshun, ZHU Weifeng. Design of 1mm harmonic mixers [C]∥The 1st China Terahertz Technique Conference. Chengdu: [s. n.], 2012: 13.
[14] 代秀,韦柳泰,徐从玉,等.太赫兹宽带分谐波混频器设计[J].微波学报,2015,S1:89-91.
DAI Xiu, WEI Liutai, XU Congyu, et al. Design of THz broadband subharmonic mixer [J]. Journal of Microwaves, 2015, S1: 89-91.
[15] YU Z X, FENG J. An ultrabroadband distributed passive gatepumped mixer in 018 μm CMOS [J]. Journal of Semiconductors, 2013, 34(8): 085005.
[16] 严蘋蘋,洪伟,陈继新.毫米波单片有源混频器的研制[J].红外与毫米波学报,2008,27(5):333-336.
YAN Pinpin, HONG Wei, CHEN Jixin. Design and implementation of a millimeter wave active mixer MMIC [J]. Journal of Infrared and Millimeter Waves, 2008, 27(5): 333-336.
[17] HOU D B, HONG W, WANG L G, et al. Distributed modeling of sixport transformer for millimeterwave SiGe BiCMOS circuits design [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3728-3738.
[18] AKIRA T, HIDETOSHI O. Gradient resistivity method for numerical evaluation of anomalous skin effect [C]∥The 15th Workshop on Signal Propagation on Interconnects. Naples: IEEE, 2011: 139142.
[19] LOK L B, HWANG C J, CHONG M H, et al. Measurement and modeling of CPW transmission lines and power dividers on electrically thick GaAs substrate to 220 GHz [C]∥ International Conference on Infrared, Millimeter and Terahertz Waves. Pasadena: IEEE, 2008: 12.
[20] NIE B Y, ZHOU J F, CHEN K S. Design and analysis of an ultra wideband distributed drainpumped mixer using 018 μm CMOS technology [C]∥ Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics. Shanghai: IEEE, 2009: 29-32.
[21] ELLINGER F, RODONI L C, SIALM G, et al. 3040 GHz drainpumped passivemixer MMIC fabricated on VLSI SOI CMOS technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(5): 1382-1391.
[22] 李志强,张健,张海英.带有小型化 Balun 的 C 波段单片 GaAs pHEMT 单平衡电阻性混频器[J].电子学报,2008,36(12): 2454-245.
LI Zhiqiang, ZHANG Jian, ZHANG Haiying. Cband monolithic GaAs pHEMT resistive singlebalanced mixer with miniaturized balun [J]. Acta Electronica Sinica, 2008, 36(12): 2454245.
[23] YANG G L, WANG Z G, LI Z Q, et al. Kaband ultra low voltage miniature subharmonic resistive mixer with a new broadside coupled Marchand balun in 018 μm CMOS technology [J]. Journal of Zhejiang UniversitySCIENCE C, 2013, 14(4): 288-295.
[24] YHLAND K. Simplified analysis of resistive mixers [J]. IEEE Microwave and Wireless Component Letters, 2007, 17(8): 604-606.
[25] LIAO H Y, TSENG C M. Lossy LC ladder matching network for ultrawideband CMOS Gilbert cell mixer design [J]. Microwave and Optical Technology Letters, 2008, 50(1): 220-222.
[26] CHIOU H K, CHOU H T. A 04 V microwatt power consum ption currentReused upConversion mixer [J]. IEEE Microwave and Wireless Components Letters, 2013, 23(1): 40-42.
[27] FEI W, YU H, LIN W M, et al. A 53to73 GHz power amplifier with 745 mW/mm2 output power density by 2D differential power combining in 65 nm CMOS [C]∥ Radio Frequency Integrated Circuits Symposium. Seattle: IEEE, 2013: 271-274.
[28] WU H S, WANG C, TZUANG C C. 142 GHz schottky diode mixer in CMOS 013 μm [C]∥Asia Pacific Microwave Conference. Sendai: IEEE, 2014: 1187-1189.
[29] HU S M, XIONG Y Z, WANG L, et al. A 135 GHz singleended mixer in 013 μm SiGe HBT for highspeed demodulation [C]∥ International Symposium on Radio Frequency Integration Technology. Singapore: IEEE, 2012: 53-55.
[30] OZGUR I, ANDY F, GABRIEL M R. Doublebalanced 130 180 GHz passive and balanced 145165 GHz active mixers in 45 nm CMOS [C]∥ Custom Integrated Circuits Conference (CICC). San Jose: IEEE, 2011: 14.

No related articles found!