Please wait a minute...
浙江大学学报(工学版)
自动化技术、电信技术     
基于空间网格的机器人工作点位姿标定方法
张湧涛, 宋志伟, 王一, 粘山坡
华北理工大学 电气工程学院,河北 唐山 063017
Robot position and rotation calibration method based on precision of spatial mesh
ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po
College of Electrical Engineering, North China University of Science and Technology, Tangshan 063017, China
 全文: PDF(910 KB)   HTML
摘要:

针对工业机器人沿着一定的轨迹在若干个有限的工作点作业的特点,提出基于空间网格精度的机器人工作点位姿校准方法.基于笛卡尔空间和欧拉角空间的空间网格精度,利用反距离权重插值法,实现对机器人位姿误差的标定.该方法具有以下优点:1) 提出欧拉角空间概念.在欧拉角空间建立空间网格精度控制模型,用该模型对机器人作定姿误差标定;2) 把机器人的位姿误差分为定位误差和定姿误差,分别进行标定,能够提高机器人的定位、定姿精度.实验结果表明,标定以后机器人的定位、定姿精度提高了大约一个数量级,证明了该方法的可行性和有效性.

Abstract:

The working characteristics of industrial robots is that robots always working in limited working points along a certain path. A robot work point calibration method based on the precision of spatial mesh was introduced according to the working characteristics of the robots. The spatial mesh precision was established based on spatial mesh accuracy in Cartesian space and Euler angle space. Then the “inverse distance to a power” method was used to calibrate robot’s pose error. The advantages of the new approach were twofold. 1) A conception named Euler angel space was proposed. In Euler angle space, the space grid accuracy control model was established, and the model was used for the robot to do the posture error calibration. 2) The robot’s position error and posture error were separated and calibrated separately. Then both the position and rotation precision can be simultaneously improved. Experimental results showed that the robot’s position and rotation precision was raised about an order of magnitude after calibration, and the feasibility and effectiveness of the method was proved.

出版日期: 2016-10-28
:  TP 242  
基金资助:

河北省自然科学基金面上项目(E2013209266);河北省高等学校科学技术研究资助项目(QN2013114);国家自然科学基金资助项目(51505125).

作者简介: 张湧涛(1958—), 男, 教授, 从事检测技术及智能装置的研究. ORCID: 0000-0002-6136-054X. E-mail: zytwin@ncst.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.019.

ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.019        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/1980

[1] LIU Changjie, YANG Xueyou, ZHU Jigui, et al. Flexible coordinate measurement system based on industrial robot for car bodyinwhite [J]. Journal of Optoelectronics Laser, 2006, 17(2): 207-210.
[2] WANG Yi, LIU Changjie, REN Yongjie, et al. Global calibration of visual inspection system based on universal robots [J]. Optics and Precision Engineering, 2009, 17(12): 3028-3033.
[3] BAI Yang, WANG Dongli. Improve the robot calibration accuracy using a dynamic online fuzzy error mapping system [J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(2): 1155-1160.
[4] ROTH Z S, MOORING B, RAVANI B. An overview of robot calibration [J]. IEEE Journal of Robotics and Automation, 1987, 3(5): 377-385.
[5] 刘松国,朱世强,王宣银,等.基于矩阵分解的一般6R机器人实时高精度逆运动学算法[J].机械工程学报,2008, 44(1): 304-309.
LIU Songguo, ZHU Shiqiang, WANG Xuanyin, et al. General 6R robot’s online highprecision inverse kinematic solution based on matrix dissolution [J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 304-309.
[6] VEITSCHEGGER W K, WU C H. Robot accuracyanalysis based on kinematics [J]. IEEE Journal of Robotics and Automation, 1986, 2(3): 171-179.
[7] ZHUANG H Q, ROTH Z S, HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators [J]. IEEE Transactions on Robotics and Automation, 1992, 8(4): 451-463.
[8] ZHUANG H, MOTAGHEDI S H, ROTH Z S. Robot calibration with planar constraints \[C\]∥ Proceedings of the IEEE International Conference of Robotics and Automation. Detroit: IEEE, 1999: 805-810.
[9] 张晓平.六自由度关节型机器人参数标定方法与实验研究[D].武汉:华中科技大学, 2013.
ZHANG Xiaoping. Parameters calibration method and experiment study on 6R robot [D]. Wuhan: Huazhong University of Science and Tecnology, 2013.
[10] 杨守瑞,尹仕斌,任永杰,等.机器人柔性视觉测量系统标定方法的改进[J].光学精密工程,2014, 22(12): 3239-3247.
YANG Shourui, YIN Shibin, REN Yongjie, et al. Improvement of robot flexible vision measurement system calibration method [J]. Optics and Precision Engineering, 2014, 22(12): 3239-3247.
[11] 高文斌,王洪光,姜勇,等.一种模块化机器人的标定方法研究[J].机械工程学报,2013, 50(3): 33-40.
GAO Wenbin, WANG Hongguang, JIANG Yong, et al. An study of calibration method on modular robots [J]. Chinese Journal of Mechanical Engineering, 2013, 50(3): 33-40.
[12] MENG Y, ZHUANG H Q. Autonomous robot calibration using vision technology [J]. Robotics and ComputerIntegrated Manufacturing, 2007, 23(4): 436-446.
[13] HE R B, ZHAO Y J, YANG S N. Kinematicparameter identification for serialrobot calibration based on POE formula [J]. IEEE Transactions on Robotics, 2010, 26(3): 411-423.
[14] SELIG J M. Geometric fundamentals of robotics [M]. New York: Springer, 2004.
[15] 韩翔宇,都东,陈强,等.基于运动学分析的工业机器人轨迹精度测量的研究[J].机器人,2002, 24 (1): 15.
HAN Xiangyu, DOU Dong, CHEN Qiang, et al. Study of measurement of trajectory precision for industrial robot based on kinematics analysis [J]. Robot, 2002, 24(1): 15.
[16] 李团结.机器人技术[M].北京:电子工业出版社,2009: 46-72.
[17] 王金玲,张东明.空间数据插值算法比较分析[J].矿山测量,2010, 4(2): 52-55.
WANG Jinling, ZHANG Dongming. Comparativeanalysis of spatial data interpolation algorithm [J]. Mine Surveying, 2010, 4(2): 52-55.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[5] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[6] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[7] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[8] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[9] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[10] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[11] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[12] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[13] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[14] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.
[15] 付兴伟, 吴功平, 周鹏, 于娜. 基于卡尔曼滤波的巡视机器人能耗估计[J]. 浙江大学学报(工学版), 2015, 49(4): 670-675.