Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
基于卡尔曼滤波的巡视机器人能耗估计
付兴伟, 吴功平, 周鹏, 于娜
武汉大学 动力与机械学院,湖北 武汉 430072
Energy-consumption estimation of inspection robot based on Kalman filter
FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na
School of Power and Mechanical Engineering, Wuhan University,Wuhan 430072,China
 全文: PDF(1385 KB)   HTML
摘要:

为了对机器人巡检完预定杆塔所需的能耗进行准确的估计,对巡视机器人进行受力分析,利用积分法得到基于线路的环境参数(档段的水平档距、档段高差等)的单档段内的能耗模型;通过实验验证了模型的可行性.通过分析可知,需要巡检的杆塔越多,经过每个档段误差的积累,从起始杆塔截止到终止杆塔的能耗理论值与测量值之间的相对误差越来越大,导致无法准确地估计巡检完预定杆塔所需的能耗.基于自适应卡尔曼滤波器对由能耗模型得到的能耗理论值进行迭代修正,将相对误差控制在1.05%左右,提高了估计精度.

Abstract:

A mechanical analysis for the inspection robot on the line was conducted in order to accurately estimate the energy consumption which is required to ensure the whole inspection process. Then the mathematical model of energy consumption was deduced based on the line parameters of working conditions (span between the adjacent towers, height difference of the adjacent towers, and so on) by the integral method. The feasibility of the model was verified by experiment. The analysis results suggest that the more towers need to inspect the bigger relative error between the theory value and the measured value of the energy consumption from the start tower until terminate tower is, which is caused by the cumulated error of the every line section between the adjacent towers. The energy consumption required for the whole inspection process cannot be accurately estimated. The theory value of the energy consumption from the start tower until terminate tower was iteratively corrected by the adaptive Kalman filter. The relative error was controlled around 1.05%, and the estimation accuracy was improved.

出版日期: 2015-04-01
:  TP 242  
基金资助:

国家“863“高技术研究发展计划资助项目(2006AA04Z202)

通讯作者: 吴功平,男,教授     E-mail: gpwu@whu.edu.cn
作者简介: 付兴伟(1987—),男,博士生,从事巡视机器人的电源管理系统研究.E-mail: laofuxingwei@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

付兴伟, 吴功平, 周鹏, 于娜. 基于卡尔曼滤波的巡视机器人能耗估计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.04.009.

FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na. Energy-consumption estimation of inspection robot based on Kalman filter. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.04.009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.04.009        http://www.zjujournals.com/eng/CN/Y2015/V49/I4/670

[1] 吴功平,肖晓晖,肖华,等.架空高压输电线路巡线机器人样机研制[J].电力系统自动化,2006, 30(13): 90-107.
WU Gong-ping, XIAO Xiao-hui, XIAO Hua, et al. Development of a mobile inspection robot for high voltage power transmission line [J]. Automation of Electric Power System, 2006, 30(13): 90-107.
[2] 石璞,董再励.基于UKF滤波的自主移动机器人锂电池SOC估计[J].仪器仪表学报,2006, 27(6): 1298-1299.
SHI Pu, DONG Zai-li. UKF-based SOC estimation of Li-ion battery for autonomous mobile robot [J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 1298-1299.
[3] 林成涛,陈全世,王军平,等.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报:自然科学版,2006, 46(2): 247-251.
LIN Cheng-tao,CHEN Quan-shi,WANG Jun-ping,et al. Improved Ah counting method for state of charge estimation of electric vehicle batteries [J]. Journal of Tsinghua University: Science and Technology, 2006, 46(2): 247-251.
[4] 高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC 估计[J].电工技术学报,2006, 26(11): 161-167.
GAO Ming-yu, HE Zhi-wei, XU Jie. Sigma point Kalman filter based SOC estimation for power supply battery [J]. Transactions of China Electrotechnical Society, 2006, 26(11): 161-167.
[5] 孟遂民.架空输电线路设计[M].北京:中国电力出版社,2007: 67.
[6] 朱兴龙,王洪光,房立金,等.输电线路巡视机器人行走动力特性与位姿分析[J].机械工程学报,2006, 42(12): 143-150.
ZHU Xing-long, WANG Hong-guang, FANG Li-jin, et al. Analysis of drive dynamic performance and position-pose of autonomous robot for transmission line inspection [J]. Chinese Journal of Mechanical Engineering, 2006, 42(12): 143-150.
[7] 刘胜,张红梅.最优估计理论[M].北京:科学出版社,2011: 273-275.
[8] GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part1. background [J]. Journal of Power Sources, 2004, 134(2): 252-261.
[9] NOVIE A W, JAEHO C. LiPB battery SOC estimation using extended Kalman filter improved with variation of single dominant parameter [J]. Journal of Power Electronics, 2012, 12(1): 40-48.
[10] ZHANG Fei, LIU Guang-jun, FANG Li-jin, et al. Estimation of battery state of charge with H∞ observer: applied to a robot for inspecting power transmission lines [J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1086-1095.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[5] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[6] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[7] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[8] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[9] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[10] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[11] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[12] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[13] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[14] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[15] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.