Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于量子行为粒子群的非对称转向机构优化
吕茂印1, 徐月同1, 叶国云2, 姚鑫骅1
1.浙江大学 浙江省先进制造技术重点实验室,浙江 杭州 310027;2. 宁波如意股份有限公司,浙江 宁波 315600
Optimal design of asymmetric steering mechanism based on quantum behaved particle swarm optimization algorithm
LV Mao yin1, XU Yue tong1, YE Guo yun2,YAO Xin hua1
1. Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University,Hangzhou 310027, China;2.  Ningbo Ruyi Group Limited Comparry, Ningbo 315600, China
 全文: PDF(902 KB)   HTML
摘要:

针对四向叉车电控式转向系统转向不稳定及过载保护能力差的缺陷,提出适用于四向叉车的液控式非对称转向机构.该机构既能满足四向叉车纵向 横向行驶之间的90°切换,又能有效规避切换过程中的“死点”现象.为了减小转向过程中四向叉车的行驶阻力、轮胎磨损以及横向转向油缸所受的侧偏力,建立非对称转向机构的转向运动数学模型;以接近Ackermann理想转向为优化目标,建立非对称转向机构的优化模型;采用量子行为粒子群优化(QPSO)算法优化非对称转向机构的尺寸以及定位参数.结果表明,优化后的非对称转向机构最小转弯半径减小12.7%,整体性能提高28%.

Abstract:

A hydraulic control asymmetric steering mechanism(ASM) which is applicable to the four way forklift truck was presented for instability and poor capacity of overload protection of the four way forklift truck electronic control steering system. The ASM can not only meet the 90° turning in which the four way forklift truck will perform a vertical lateral steering, but also effectively avoid the “dead point” phenomenon in the process of steering. A steering kinematics mathematical model was constructed in order to reduce the movement resistance, tire wear and the anti force acting on the lateral steering oil cylinder in the steering process. The ASM’s optimization model was established to approach the Ackermann steering. Then the ASM’s size and positional parameters were optimized by the use of quantum behaved particle swarm optimization (QPSO) algorithm. Results showed that the minimum turning radius was reduced12.7% and ASM’s overall performance was improved 28%.

出版日期: 2016-02-01
:  TH 122  
基金资助:

宁波市科技计划资助项目(2013B82001).

通讯作者: 徐月同,男,副教授. ORCID: 0000 0001 5702 3527.     E-mail: xyt@zju.edu.cn
作者简介: 吕茂印(1989—),男,硕士生,主要从事高端仓储工业车辆研究. ORCID: 0000 0002 5443 1047.E-mail: lmyzju@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吕茂印, 徐月同, 叶国云, 姚鑫骅. 基于量子行为粒子群的非对称转向机构优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.004.

LV Mao yin, XU Yue tong, YE Guo yun,YAO Xin hua. Optimal design of asymmetric steering mechanism based on quantum behaved particle swarm optimization algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.004        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/218

[1] 张占仓.4t四向静压叉车设计与研究[D].西安:长安大学,2012.
ZHANG Zhan cang. Design and Research of 4t Four Way Hydraulic diesel forklift Truck [D].Xi An: Chang’an University, 2012.
[2] ECONOMOU J T, COLYER R E. Fuzzy hybrid modelling of an Ackerman steered electric vehicle [J]. International Journal Of Approximate Reasoning, 2006, 3(41): 343-368.
[3] VENKATACHALAM R, PADMA R A. Development of a new steering mechanism for automobiles [J]. Advances in Reconfigurable Mechanisms and Robots I, 2012: 209-219.
[4] ETTEFAGH M M, JAVASH M S. Optimal synthesis of four bar steering mechanism using AIS and genetic algorithms [J]. Journal of Mechanical Science and Technology.2014, 28(6): 2351-2362.
[5] 姚明龙,王福林.车辆转向梯形机构优化设计及其求解方法的研究[J].机械设计与制造,2007,20(5): 24-26.
YAO Ming long, WANG Fu lin. The optimal design of steering trapezoidal mechanism of vehicles and the research of solution method[J]. Machinery Design & Manufacture, 2007, 20(5): 24-26.
[6] 刘岭,闫光荣,累毅,等. 基于改进粒子群算法的车辆转向梯形机构优化[J]:农业工程学报,2013,29(10): 76-82.
LIU Ling, YAN Guang rong, LEI Yi,et al. Optimization design of steering trapezoid mechanism based on an improved particle swarm optimization[J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 76-82.
[7] DE JUAN A, SANCIBRIAN R, VIADERO F. Optimal synthesis of function generation in steering linkages[J]. International Journal of Automotive Technology. 2012. 12, 7(13): 1033-1046.
[8] 王望予.汽车设计[M].4版.北京:机械工业出版社.2004.08.
[9] 李建勇.粒子群优化算法研究[D].杭州: 浙江大学,2004.
LI Jian yong. Particle swarm optimization algorithm research [D]. Hang Zhou: Zhejiang University, 2004.
[10] KENNEDY J, EBERHART R, SHI Y. Swarm intelligence [M] San Francisco: Morgan Kaufmann publishers, 2001.
[11] BERGH F V d. An analysis of particle swarm optimizers [D]: University of Pretoria, 2001.
[12] 孙俊,方伟,吴水俊.量子行为粒子群优化原来及其应用[M].北京:清华大学出版社.2011.08.
[13] TIAN N, LAI C H. Parallel quantum behaved particle swarm optimization [J]. International Journal of Machine Learning and Cybernetics. 2013, 5(2): 309318.
[14] 张德跃,韩继峰.叉车转角误差的图解法[J].建筑机械2008(7): 85-86.
ZHANG De yue, HAN Ji feng. Diagram method for error of forklift steering angle [J]. Construction Machinery. 2008(7): 85-86.
[1] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[2] 冀瑜,邱清盈,冯培恩,黄浩. 国际专利分类表中设计知识的提取和利用[J]. 浙江大学学报(工学版), 2016, 50(3): 412-418.
[3] 陈实, 杨智渊, 孙凌云, 楼赟. 草图设计知识分析方法——结合语音能量和创意拐点[J]. 浙江大学学报(工学版), 2015, 49(11): 2073-2082.
[4] 吴晨睿, 张树有, 刘晓健. 基于群聚参数网络分析的产品方案设计评价[J]. 浙江大学学报(工学版), 2015, 49(8): 1495-1502.
[5] 陈进,庆飞,庞晓平. 基于组合挖掘的反铲液压挖掘机工作装置优化设计[J]. 浙江大学学报(工学版), 2014, 48(9): 1654-1660.
[6] 盖宇春, 朱伟东, 柯映林. 三坐标定位器部件刚度配置方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1434-1441.
[7] 刘征, 顾新建, 潘凯, 杨青海. 基于TRIZ的产品生态设计方法研究——融合规则和案例推理[J]. J4, 2014, 48(3): 436-444.
[8] 杨巍,张秀峰,杨灿军,吴海杰. 基于人机5杆模型的下肢外骨骼系统设计[J]. J4, 2014, 48(3): 430-435.
[9] 程吉祥,顾新建,代风,刘征. 基于BioTRIZ的产品创新设计过[J]. J4, 2014, 48(1): 35-41.
[10] 盖宇春, 朱伟东, 柯映林. 大型飞机总装配中支撑点设计分析技术[J]. J4, 2013, 47(12): 2176-2183.
[11] 林晓华, 冯毅雄, 谭建荣. 基于免疫优化的产品系统可靠性参数区间预测方法[J]. J4, 2013, 47(6): 1013-1021.
[12] 应征, 王青, 李江雄, 柯映林,孙文博,韩永伟. 飞机数字化装配系统运动数据集成及监控技术[J]. J4, 2013, 47(5): 761-767.
[13] 应征, 章明, 王青, 柯映林. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. J4, 2013, 47(2): 209-215.
[14] 刘曦泽, 祁国宁, 傅建中, 樊蓓蓓, 许静. 集成形态学矩阵与冲突解决原理的设计过程模型[J]. J4, 2012, 46(12): 2243-2251.
[15] 黄雪梅, 张磊安, 魏修亭. 兆瓦级风机叶片静力加载过程D-MFAC控制[J]. J4, 2012, 46(12): 2280-2284.