Please wait a minute...
浙江大学学报(工学版)
机械工程     
伺服比例阀的非线性建模与实验验证
方锦辉,孔晓武,魏建华
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Nonlinear modeling and validation of a servo-solenoid valve
FANG Jin-hui, KONG Xiao-Wu, WEI Jian-hua
The State Key Laboratory of Fluid Power and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1736 KB)   HTML
摘要:

针对伺服比例阀中存在的多种非线性因素,提出包含滞环、磁饱和、时变参数、摩擦、液动力等特征在内的阀整体模型.基于非线性电路原理,建立比例电磁铁的集中参数模型.在多个不同固定气隙下进行电磁铁的阶跃电压动态测试,获取一系列磁化特性曲线,通过曲线拟合和数据插值等方法建立电感、电磁力增益和耗散电阻等电磁铁关键参数的非线性函数式.根据动力学方程建立阀体机械运动部件的模型,采用直接测量和间接估算相结合的方法确定各项参数值.通过实验获取恒定压差下稳态液动力与阀芯开度的关系曲线,并提供拟合后的数学表达式.为验证伺服比例阀综合模型的准确性,设计开环和闭环2种测试方法.开环时直接给电磁铁施加恒定电压,并采集电流与阀芯位移的阶跃响应曲线;闭环时通过阀芯位置PID控制器,分别测试空载与加载时的阀芯动态响应特性.仿真和实验结果表明,仿真模型在同样的参数和测试条件下获得与实验相吻合的响应曲线,验证模型的有效性,为后续针对伺服比例阀的控制器开发和故障诊断等工作提供有效的工具.

Abstract:

For multiple nonlinear factors inherent in the servo-solenoid valve, an overall model of the valve was proposed, including the features of hysteresis, magnetic saturation, time-varying parameters, friction and flow force. First, a lumped-parameter model of the proportional solenoid was built based on the principle of nonlinear circuit. Step voltage dynamic tests of the solenoid under different constant air-borne gaps were conduct, so that a series of magnetization curves were obtained. Through curve fitting and data interpolation of the experimental results,  nonlinear function expressions of main parameters were built, such as the inductance, electromagnetic-force gain and dissipation resistor. Second, the model of the valves mechanical motion part was built based on kinetic equation, and the values of parameters were gained by direct measurements and indirect calculation. Then, the steady-state flow force versus valve opening under constant pressure drop was measured by experiment. After curve-fitting, the expression of flow force was provided. Finally, to validate the combination model of the  valve, two methods including open-loop  and closed-loop tests were designed. During the open-loop test, constant voltages were exerted on/off the solenoid instantly and the step response of current and spool displacement were measured. In the closed-loop test, a PID controller was used to test the step response of the spools displacement with/without hydraulic load. The results  show that, the response curves from the simulation model under the same parameters and test conditions shows good agreement with the experimental results. It validates the valves model and provides an effective tool for controller design and failure diagnosis.

出版日期: 2014-11-26
:  TH 137  
基金资助:

 国家自然科学基金资助项目(51075359).

通讯作者: 魏建华, 男, 教授, 博导.     E-mail: jhwei@sfp.zju.edu.cn
作者简介: 方锦辉(1983-), 男, 助理研究员, 从事电液控制系统和大流量阀的研究. E-mail: jhfang@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方锦辉,孔晓武,魏建华. 伺服比例阀的非线性建模与实验验证[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.05.005.

FANG Jin-hui, KONG Xiao-Wu, WEI Jian-hua. Nonlinear modeling and validation of a servo-solenoid valve. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.05.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.05.005        http://www.zjujournals.com/eng/CN/Y2014/V48/I5/784

[1] TOPCU E, YUKSEL I, KAMIS Z. Development of electro-pneumatic fast switching valve and investigation of its characteristics[J]. Mechatronics, 2006, 16(6): 365378.
[2] KAJIMA T, KAWAMURA Y. Development of a high-speed solenoid valve: investigation of solenoids[J]. IEEE Transactions on Industrial Electronics, 1995, 42(1): 18.
[3] 李其朋.直动式电液伺服阀关键技术的研究[D]. 杭州:浙江大学, 2005:5155.
LI Qi-peng. Research on the key technologies of direct drive servo valve[D]. Hangzhou: Zhejiang University, 2005: 5155.
[4] MITSUTAKE Y, HIRATA K, ISHIHARA Y. Dynamic response analysis of a linear solenoid actuator [J]. IEEE Transactions on Magnetics, 1997, 33(2): 16341637.
[5] SORLI M, FIGLIOLINI G, ALMONDO A. Mechatronic model and experimental validation of a pneumatic servo-solenoid valve [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2010, 132(5): 110.
[6] CHUA L O, STROMSMOE K A. Mathematical models for dynamic hysteresis loops [J]. International Journal of Engineering Science, 1971, 9: 435450.
[7] BASS S C. A Generalized Hysteresis Model[D]. West Lafayette: Purdue University, 1971: 2769.
[8] VAUGHAN N D, GAMBLE J B. The modeling and simulation of a proportional electromagnet valve[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1996, 118(1): 120125.
[9] CRISTOFORI D, VACCA A. Electrohydraulic proportional valve modeling comprehending magnetic hysteresis[C]∥ 52nd National Conference on Fluid Power. Las Vegas:Nevada, 2011: 700711.
[10] CRISTOFORI D, VACCA A. The modeling of electrohydraulic proportional valves [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2012, 134(2): 108120.
[11] FITCH E C, HONG I T. Hydraulic component design and selection [M]. Stillwater, OK: BarDyne, 2008.
[12] MANRING N D, ZHANG S S. Pressure transient flow forces for hydraulic spool valves [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2012, 134(2): 101105.
[13] 许小庆,权龙,王旭平.伺服比例阀用动圈式直线电机[J]. 中国电机工程学报, 2010, 30(9): 9296.
XU Xiao-qing, QUAN Long, WANG Xu-ping.Moving coil linear motor used in servo proportional valve [J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(9): 9296.
[14] 周淼磊,杨志刚,高巍,等.高速精密压电型电液伺服阀及其控制方法[J]. 哈尔滨工业大学学报, 2009, 41(9): 160163.
ZHOU Miao-lei, YANG Zhi-gang, GAO Wei, et al. High-speed and precise piezoelectric electro-hydraulic servo valve and its control method [J]. Journal of Harbin Institute of Technology, 2009, 41(9): 160163.
[15] BOSCH REXROTH. Servo solenoid valves with electrical position feedback [EB/OL]. (2005-10-10) [2013-01-02]. http://www.boschrexroth.com/modules/BRMV2PDFDownload.dll/re29032_2005-01.pdf?db=brmv2&lvid=1097233&mvid=10270&clid=20&sid=E052D1E76402CE7B9FE18C711C75022E& sch=M&id=10270,20,1097233.

[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[8] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[12] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.