Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 161-171    DOI: 10.3785/j.issn.1008-9209.2023.08.071
Reviews     
Research progress on crop yield prediction based on data assimilation system
Yu ZHAO1,2(),Wude YANG1(),Dandan DUAN2,Meichen FENG1,Chao WANG1
1.College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
2.Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Download: HTML   HTML (   PDF(4277KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Data assimilation system integrates the advantages of remote sensing data and crop growth models, providing a powerful means for real-time monitoring of agricultural production conditions. This paper, built upon a brief introduction to remote sensing methods for crop yield estimation, specifically focused on four aspects: the development of data assimilation algorithms, the application potential of multi-source remote sensing data for data assimilation, the uncertainty of data assimilation system, and the scale effects of data assimilation system. In addition, to address the current state of agricultural applications, future efforts should thoroughly explore the advantages of multi-source remote sensing data, multi-crop growth model ensembles, and data algorithms. The ultimate goal is to establish a crop yield estimation model centered around mechanism model, thereby providing robust data and technical support for the formulation of sound field management strategies, the planning of cereal industry layouts, and the establishment of import and export trade policies.



Key wordsyield      data assimilation system      multi-crop growth model ensembles      multi-source remote sensing data     
Received: 07 August 2023      Published: 25 April 2024
CLC:  S127  
Corresponding Authors: Wude YANG     E-mail: zy928286257@163.com;sxauywd@126.com
Cite this article:

Yu ZHAO, Wude YANG, Dandan DUAN, Meichen FENG, Chao WANG. Research progress on crop yield prediction based on data assimilation system. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 161-171.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.08.071     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/161


基于数据同化系统的作物产量预测研究进展

数据同化系统融合了遥感数据和作物生长模型的优势,是实时监测农业生产状况的有力手段。本文在简要介绍作物产量遥感估测方法的基础上,重点对数据同化算法的发展情况、多源遥感数据在数据同化上的应用潜力、数据同化系统的不确定性以及数据同化系统的尺度效应4方面进行论述。并且针对农业应用现状,提出未来应充分挖掘多源遥感数据、多作物生长模型集合和数据算法的优势,最终实现以机理模型为纽带的作物估产模式,并为制定田间管理策略、规划粮食产业布局和制定进出口贸易政策提供有力的数据和技术支撑。


关键词: 产量,  数据同化系统,  多作物生长模型集合,  多源遥感数据 
Fig. 1 Statistics of literatures on crop yield prediction based on remote sensing technology from 1975 to 2023A. Statistics of literature number; B. Word cloud. The statistical date was from 1975-01-01 to 2023-02-28.
Fig. 2 Remote sensing monitoring models for crop yieldSimple transformation model refers to semi-empirical model constructed by specific physiological process. In the formulas, Y, AP and RS represent yield, agronomic parameters and remote sensing data, respectively.
Fig. 3 Number of literatures on crop growth models from 2007 to 2023EPIC: Erosion-productivity impact calculator; MCWLA: Model to capture the crop-weather relationship over large area. The statistical date was from 2007-01-01 to 2023-02-28.

数据同化算法

Data assimilation algorithm

作物生长模型

Crop growth model

遥感数据

Remote sensing data

状态变量

State variable

文献

Reference

参数优化算法

Parameter

optimization

algorithm

单纯型搜索算法STICSSPOT、Landsat TM、机载影像叶面积指数[33]
复合型混合演化算法SAFYPlanet生物量[34]
复合型混合演化算法WOFOSTHJ-1A/B叶面积指数、叶片氮积累量[35]
模拟退火算法CERES-MaizeMODIS叶面积指数[36]
粒子群优化算法AquaCrop无人机数据生物量[13]
粒子群优化算法DSSAT地面高光谱数据叶面积指数、冠层氮积累量[37]
遗传算法SWAPLandsat ETM+蒸腾量[38]
Powell共轭方向法DSSATMODIS叶面积指数[39]
四维变分算法CERES-WheatSentinel叶面积指数、土壤含水量[40]

滤波算法

Filtering

algorithm

集合卡尔曼滤波算法SAFYLandsat叶面积指数[41]
集合卡尔曼滤波算法CERES-WheatSentinel叶面积指数、土壤含水量[40]
粒子滤波算法APSIMCubsat叶面积指数[42]
粒子滤波算法PILOTESentinel和Landsat叶面积指数[43]
Table 1 Main studies on data assimilation algorithm
Fig. 4 Schematic diagram of data assimilation algorithmA and B depict schematic diagrams of parameter optimization algorithm and filtering algorithm, respectively.
[1]   姜长云,王一杰.新中国成立70年来我国推进粮食安全的成就、经验与思考[J].农业经济问题,2019(10):10-23. DOI:10.13246/j.cnki.iae.2019.10.002
JIANG C Y, WANG Y J. The achievement, experiences of promoting food security in China since the founding of new China 70 years ago and our thinking about it[J]. Issues in Agricultural Economy, 2019(10): 10-23. (in Chinese with English abstract)
doi: 10.13246/j.cnki.iae.2019.10.002
[2]   KARTHIKEYAN L, CHAWLA I, MISHRA A K. A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses[J]. Journal of Hydrology, 2020, 586: 124905. DOI: 10.1016/j.jhydrol.2020.124905
doi: 10.1016/j.jhydrol.2020.124905
[3]   BATTUDE M, BITAR A AL, MORIN D, et al. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[J]. Remote Sensing of Environment, 2016, 184: 668-681. DOI: 10.1016/j.rse.2016.07.030
doi: 10.1016/j.rse.2016.07.030
[4]   EL-HENDAWY S, AL-SUHAIBANI N, ELSAYED S, et al. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions[J]. Plant Physiology and Biochemistry, 2019, 144: 300-311. DOI: 10.1016/j.plaphy.2019.10.006
doi: 10.1016/j.plaphy.2019.10.006
[5]   FU Z P, JIANG J, GAO Y, et al. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle[J]. Remote Sensing, 2020, 12(3): 508. DOI: 10.3390/rs12030508
doi: 10.3390/rs12030508
[6]   LI Z H, TAYLOR J, YANG H, et al. A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data[J]. Field Crops Research, 2020, 248: 107711. DOI: 10.1016/j.fcr.2019.107711
doi: 10.1016/j.fcr.2019.107711
[7]   ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255. DOI: 10.1016/j.isprsjprs.2017.05.003
doi: 10.1016/j.isprsjprs.2017.05.003
[8]   CHLINGARYAN A, SUKKARIEH S, WHELAN B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69. DOI: 10.1016/j.compag.2018.05.012
doi: 10.1016/j.compag.2018.05.012
[9]   PERROS N, KALIVAS D, GIOVOS R. Spatial analysis of agronomic data and UAV imagery for rice yield estimation[J]. Agriculture, 2021, 11(9): 809. DOI: 10.3390/agriculture11090809
doi: 10.3390/agriculture11090809
[10]   徐新刚,吴炳方,蒙继华,等.农作物单产遥感估算模型研究进展[J].农业工程学报,2008,24(2):290-298. DOI:10.3321/j.issn:1002-6819.2008.02.055
XU X G, WU B F, MENG J H, et al. Research advances in crop yield estimation models based on remote sensing[J]. Transactions of the CSAE, 2008, 24(2): 290-298. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6819.2008.02.055
[11]   付江鹏,贾彪,魏雪,等.基于冠层覆盖度的玉米植株临界氮浓度模型构建与产量预测[J].植物营养与肥料学报,2021,27(10):1703-1713. DOI:10.11674/zwyf.20621
FU J P, JIA B, WEI X, et al. Construction of critical nitrogen concentration model based on canopy coverage and the accuracy in yield prediction of maize[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1703-1713. (in Chinese with English abstract)
doi: 10.11674/zwyf.20621
[12]   屈莎,李振海,邱春霞,等.基于开花期氮素营养指标的冬小麦籽粒蛋白质含量遥感预测[J].农业工程学报,2017,33(12):186-193. DOI:10.11975/j.issn.1002-6819.2017.12.024
QU S, LI Z H, QIU C X, et al. Remote sensing prediction of winter wheat grain protein content based on nitrogen nutrition index at anthesis stage[J]. Transactions of the CSAE, 2017, 33(12): 186-193. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2017.12.024
[13]   YUE J B, FENG H K, LI Z H, et al. Mapping winter-wheat biomass and grain yield based on a crop model and UAV remote sensing[J]. International Journal of Remote Sensing, 2021, 42(5): 1577-1601. DOI: 10.1080/01431161.2020.1823033
doi: 10.1080/01431161.2020.1823033
[14]   JIANG H, HU H, ZHONG R H, et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level[J]. Global Change Biology, 2020, 26(3): 1754-1766. DOI: 10.1111/gcb.14885
doi: 10.1111/gcb.14885
[15]   CAO J, ZHANG Z, TAO F L, et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches[J]. Agricultural and Forest Meteorology, 2021, 297: 108275. DOI: 10.1016/j.agrformet.2020.108275
doi: 10.1016/j.agrformet.2020.108275
[16]   LIU J G, PATTEY E, MILLER J R, et al. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model[J]. Remote Sensing of Environment, 2010, 114(6): 1167-1177. DOI: 10.1016/j.rse.2010.01.004
doi: 10.1016/j.rse.2010.01.004
[17]   陈仲新,任建强,唐华俊,等.农业遥感研究应用进展与展望[J].遥感学报,2016,20(5):748-767. DOI:10.11834/jrs.20166214
CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese with English abstract)
doi: 10.11834/jrs.20166214
[18]   DONG J, LU H B, WANG Y W, et al. Estimating winter wheat yield based on a light use efficiency model and wheat variety data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 18-32. DOI: 10.1016/j.isprsjprs.2019.12.005
doi: 10.1016/j.isprsjprs.2019.12.005
[19]   JIN X L, LI Z H, YANG G J, et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 24-37. DOI: 10.1016/j.isprsjprs.2017.02.001
doi: 10.1016/j.isprsjprs.2017.02.001
[20]   程志强,蒙继华.作物单产估算模型研究进展与展望[J].中国生态农业学报,2015,23(4):402-415. DOI:10.13930/j.cnki.cjea.141218
CHENG Z Q, MENG J H. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402-415. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.141218
[21]   EZUI K S, LEFFELAAR P A, FRANKE A C, et al. Simulating drought impact and mitigation in cassava using the LINTUL model[J]. Field Crops Research, 2018, 219: 256-272. DOI: 10.1016/j.fcr.2018.01.033
doi: 10.1016/j.fcr.2018.01.033
[22]   GITELSON A A, PENG Y, ARKEBAUER T J, et al. Pro-ductivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production[J]. Journal of Plant Physiology, 2015, 177: 100-109. DOI: 10.1016/j.jplph.2014.12.015
doi: 10.1016/j.jplph.2014.12.015
[23]   WANG S Q, HUANG K, YAN H, et al. Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China[J]. Ecological Complexity, 2015, 23: 1-13. DOI: 10.1016/j.ecocom.2015.04.004
doi: 10.1016/j.ecocom.2015.04.004
[24]   STEDUTO P, HSIAO T C, RAES D, et al. AquaCrop—the FAO crop model to simulate yield response to water: Ⅰ. Concepts and underlying principles[J]. Agronomy Journal, 2009, 101(3): 426-437. DOI: 10.2134/agronj2008.0139s
doi: 10.2134/agronj2008.0139s
[25]   VAN DAM J C, GROENENDIJK P, HENDRIKS R F A, et al. Advances of modeling water flow in variably saturated soils with SWAP[J]. Vadose Zone Journal, 2008, 7(2): 640-653. DOI: 10.2136/vzj2007.0060
doi: 10.2136/vzj2007.0060
[26]   SPITTERS C, VAN KRAALINGCN D, VAN KCULEN H. A simple and universal crop growth simulator: SUCROS87[M]//RABBINGE R, WARD S A, VAN LAAR H H. Simulation and Systems Management in Crop Protection. Wagcningen: Simulation Monographs, Pudoc, 1989: 145-181.
[27]   SOLER C M T, SENTELHAS P C, HOOGENBOOM G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment[J]. European Journal of Agronomy, 2007, 27: 165-177. DOI: 10.1016/j.eja.2007.03.002
doi: 10.1016/j.eja.2007.03.002
[28]   MEARNS L O, ROSENZWEIG C, GOLDBERG R. The effect of changes in daily and interannual climatic variability on CERES-Wheat: a sensitivity study[J]. Climatic Change, 1996, 32(3): 257-292.
[29]   PINNSCHMIDT H O, BATCHELOR W D, TENG P S. Simulation of multiple species pest damage in rice using CERES-rice[J]. Agricultural Systems, 1995, 48(2): 193-222.
[30]   KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3/4): 267-288. DOI: 10.1016/s1161-0301(02)00108-9
doi: 10.1016/s1161-0301(02)00108-9
[31]   PAREDES P, WEI Z, LIU Y, et al. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain[J]. Agricultural Water Management, 2015, 152: 57-71. DOI: 10.1016/j.agwat.2014.12.007
doi: 10.1016/j.agwat.2014.12.007
[32]   JIN X L, KUMAR L, LI Z H, et al. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy, 2018, 92: 141-152. DOI: 10.1016/j.eja.2017.11.002
doi: 10.1016/j.eja.2017.11.002
[33]   JÉGO G, PATTEY E, LIU J G. Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops[J]. Field Crops Research, 2012, 131: 63-74. DOI: 10.1016/j.fcr.2012.02.012
doi: 10.1016/j.fcr.2012.02.012
[34]   ZHAO Y, HAN S Y, MENG Y, et al. Transfer-learning-based approach for yield prediction of winter wheat from planet data and SAFY model[J]. Remote Sensing, 2022, 14(21): 5474. DOI: 10.3390/rs14215474
doi: 10.3390/rs14215474
[35]   陈劲松,黄健熙,林珲,等.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学,2010,40():173-183.
CHEN J S, HUANG J X, LIN H, et al. Rice yield estimation by assimilation remote sensing into crop growth model[J]. Scientia Sinica (Informationis), 2010, 40(): 173-183. (in Chinese with English abstract)
[36]   JIN H A, LI A N, WANG J D, et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy, 2016, 78: 1-12. DOI: 10.1016/j.eja.2016.04.007
doi: 10.1016/j.eja.2016.04.007
[37]   LI Z H, WANG J H, XU X G, et al. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation[J]. Remote Sensing, 2015, 7(9): 12400-12418. DOI: 10.3390/rs70912400
doi: 10.3390/rs70912400
[38]   INES A V M, HONDA K, GUPTA A DAS, et al. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture[J]. Agricultural Water Management, 2006, 83(3): 221-232. DOI: 10.1016/j.agwat.2005.12.006
doi: 10.1016/j.agwat.2005.12.006
[39]   FANG H L, LIANG S L, HOOGENBOOM G, et al. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model[J]. International Journal of Remote Sensing, 2008, 29(10): 3011-3032. DOI: 10.1080/01431160701408386
doi: 10.1080/01431160701408386
[40]   刘正春,徐占军,毕如田,等.基于4DVAR和EnKF的遥感信息与作物模型冬小麦估产[J].农业机械学报,2021,52(6):223-231. DOI:10.6041/j.issn.1000-1298.2021.06.023
LIU Z C, XU Z J, BI R T, et al. Winter wheat yield estimation based on assimilated remote sensing date with crop growth model using 4DVAR and EnKF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 223-231. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2021.06.023
[41]   KANG Y H, ÖZDOĞAN M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach[J]. Remote Sensing of Environment, 2019, 228: 144-163. DOI: 10.1016/j.rse.2019.04.005
doi: 10.1016/j.rse.2019.04.005
[42]   ZILIANI M G, ALTAF M U, ARAGON B, et al. Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model[J]. Agricultural and Forest Meteorology, 2022, 313: 108736. DOI: 10.1016/j.agrformet.2021.108736
doi: 10.1016/j.agrformet.2021.108736
[43]   ZARE H, WEBER T K D, INGWERSEN J, et al. Combining crop modeling with remote sensing data using a particle filtering technique to produce real-time forecasts of winter wheat yields under uncertain boundary conditions[J]. Remote Sensing, 2022, 14(6): 1360. DOI: 10.3390/rs14061360
doi: 10.3390/rs14061360
[44]   黄健熙,黄海,马鸿元,等.遥感与作物生长模型数据同化应用综述[J].农业工程学报,2018,34(21):144-156. DOI:10.11975/j.issn.1002-6819.2018.21.018
HUANG J X, HUANG H, MA H Y, et al. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the CSAE, 2018, 34(21): 144-156. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2018.21.018
[45]   DONG T F, LIU J G, QIAN B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49: 63-74. DOI: 10.1016/j.jag.2016.02.001
doi: 10.1016/j.jag.2016.02.001
[46]   KALNAY E, LI H, MIYOSHI T, et al. 4-D-Var or ensemble Kalman filter?[J]. Tellus, 2007, 59(5): 758-773. DOI: 10.1111/j.1600-0870.2007.00261.x
doi: 10.1111/j.1600-0870.2007.00261.x
[47]   CASA R, VARELLA H, BUIS S, et al. Forcing a wheat crop model with LAI data to access agronomic variables: evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach[J]. European Journal of Agronomy, 2012, 37(1): 1-10. DOI: 10.1016/j.eja.2011.09.004
doi: 10.1016/j.eja.2011.09.004
[48]   CHAHBI BELLAKANJI A, ZRIBI M, LILI-CHABAANE Z, et al. Forecasting of cereal yields in a semi-arid area using the simple algorithm for yield estimation (SAFY) agro-meteorological model combined with optical SPOT/HRV images[J]. Sensors, 2018, 18(7): 2138. DOI: 10.3390/s18072138
doi: 10.3390/s18072138
[49]   DONG Y Y, WANG J H, LI C J, et al. Comparison and analysis of data assimilation algorithms for predicting the leaf area index of crop canopies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 188-201. DOI: 10.1109/JSTARS.2012.2208943
doi: 10.1109/JSTARS.2012.2208943
[50]   YANG H, ZHAO C J, YANG G J, et al. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096076. DOI: 10.1117/1.JRS.9.096076
doi: 10.1117/1.JRS.9.096076
[51]   杨浩.基于时间序列全极化与简缩极化SAR的作物定量监测研究[D].北京:中国林业科学研究院,2015.
YANG H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. Beijing: Chinese Academy of Forestry, 2015. (in Chinese with English abstract)
[52]   HEINZEL V, WASKE B, BRAUN M, et al. Remote sensing data assimilation for regional crop growth modelling in the region of Bonn (Germany)[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 3647-3650. DOI: 10.1109/IGARSS.2007.4423636
doi: 10.1109/IGARSS.2007.4423636
[53]   LIU H L, YANG J Y, DRURY C F, et al. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3): 313-328. DOI: 10.1007/s10705-010-9396-y
doi: 10.1007/s10705-010-9396-y
[54]   VAZIFEDOUST M, VAN DAM J C, BASTIAANSSEN W G M, et al. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts[J]. International Journal of Remote Sensing, 2009, 30(10): 2523-2545. DOI: 10.1080/01431160802552769
doi: 10.1080/01431160802552769
[55]   CHEN M, LIU S, TIESZEN L L. Optimization of an ecosystem model through the assimilation of eddy flux observations using a smoothed ensemble Kalman filter[C]//Proceedings of the 2007 Summer Computer Simulation Conference. San Diego: [s. n.], 2007: 875-882. DOI: 10.1145/1357910.1358046
doi: 10.1145/1357910.1358046
[56]   HASEGAWA T, LI T, YIN X Y, et al. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments[J]. Scientific Reports, 2017, 7: 14858. DOI: 10.1038/s41598-017-13582-y
doi: 10.1038/s41598-017-13582-y
[57]   YIN X G, KERSEBAUM K C, KOLLAS C, et al. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe[J]. European Journal of Agronomy, 2017, 84: 152-165. DOI: 10.1016/j.eja.2016.12.009
doi: 10.1016/j.eja.2016.12.009
[58]   DHILLON M S, DAHMS T, KUEBERT-FLOCK C, et al. Modelling crop biomass from synthetic remote sensing time series: example for the DEMMIN test site, Germany[J]. Remote Sensing, 2020, 12(11): 1819. DOI: 10.3390/rs12111819
doi: 10.3390/rs12111819
[59]   FANG H L, LIANG S L, HOOGENBOOM G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation[J]. International Journal of Remote Sensing, 2011, 32(4): 1039-1065. DOI: 10.1080/01431160903505310
doi: 10.1080/01431160903505310
[60]   GAO Y J, WALLACH D, HASEGAWA T, et al. Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging[J]. Agricultural and Forest Meteorology, 2021, 311: 108686. DOI: 10.1016/j.agrformet.2021.108686
doi: 10.1016/j.agrformet.2021.108686
[61]   IIZUMI T, SAKAI T. The global dataset of historical yields for major crops 1981—2016[J]. Scientific Data, 2020, 7: 97. DOI: 10.1038/s41597-020-0433-7
doi: 10.1038/s41597-020-0433-7
[62]   GROGAN D, FROLKING S, WISSER D, et al. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015[J]. Scientific Data, 2022, 9: 15. DOI: 10.1038/s41597-021-01115-2
doi: 10.1038/s41597-021-01115-2
[63]   LUO Y C, ZHANG Z, CAO J, et al. Accurately mapping global wheat production system using deep learning algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102823. DOI: 10.1016/j.jag.2022.102823
doi: 10.1016/j.jag.2022.102823
[64]   CHENG M H, JIAO X Y, SHI L, et al. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing[J]. Scientific Data, 2022, 9: 641. DOI: 10.1038/s41597-022-01761-0
doi: 10.1038/s41597-022-01761-0
[65]   YANG S Q, HU L, WU H B, et al. Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6253-6269. DOI: 10.1109/JSTARS.2021.3089203
doi: 10.1109/JSTARS.2021.3089203
[1] Haowei NA,Yinghan LIU,Lufeng ZHAO,Jianjun TANG,Liangliang HU,Xin CHEN. Impact of intercropping of rice cultivars on methane emissions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 270-279.
[2] Tong QI,Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU. Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 109-122.
[3] Mingxia WEN,Hui XI,Shaohui WU,Na LI,Xijing CHEN. Effects of drip fertigation on production effect of mountain citrus orchard[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 566-572.
[4] Hongji TAN,Yanming GAO,Jianshe LI,Wenlu WEI. Effects of different functional fertilizers on quality, yield and substrate environment of substrate-grown cherry tomatoes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 434-442.
[5] Kaiyou ZHENG,Yun REN,Honglei LI,Jing LIU,Qiang LI. Effects of maize plant type and row width on photosynthetic characteristics and yield of ginger under maize/ginger intercropping mode[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 310-320.
[6] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[7] Qiyao ZHOU,Yuanjun NI,Shun’an XU,Qiong WANG,Lichuan ZHAN,Ying FENG. Effects of foliar conditioners on safety production of main rice varieties in cadmium-contaminated farmland in eastern Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 768-776.
[8] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[9] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[10] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[11] Lai WEI,Mingyan YU,Nannan QIN,Chongping HUANG,Ying XIE,Wenbo SUN,Liehong WU,Weizhong WANG,Guoxin WANG. Effects of agro-photovoltaic integrating system on field illumination and sweet potato growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 288-295.
[12] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[13] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[14] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[15] JIANG Jingjing, CHANG Xiaoxiao, HU Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 678-686.