Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (6): 768-776    DOI: 10.3785/j.issn.1008-9209.2021.02.151
Resource utilization & environmental protection     
Effects of foliar conditioners on safety production of main rice varieties in cadmium-contaminated farmland in eastern Zhejiang Province
Qiyao ZHOU1(),Yuanjun NI2(),Shun’an XU1,Qiong WANG1,Lichuan ZHAN2,Ying FENG1()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Shengzhou Agricultural Technology Extension Center, Shaoxing 310024, Zhejiang, China
Download: HTML   HTML (   PDF(896KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Application of foliar conditioner is an important technical measure to reduce the contents of heavy metals in edible parts of crops and realize the safe utilization of moderately and slightly polluted farmlands. In this study, the effects of different ion antagonistic foliar conditioners and the optimal conditioner on the safety of rice production were compared through two consecutive years of field experiments. The field plot experiment results showed that five kinds of foliar conditioners had obvious effects on reducing cadmium (Cd) content and increasing yield in the two sites, among which spraying multiple compound foliar conditioner had the best effect on reducing Cd content in rice, and Cd contents in the brown rice in two sites decreased by 13.0% and 14.5%, respectively. Furthermore, the effects of foliar application of the multiple compound conditioner on rice yields and Cd contents of seven main rice varieties in eastern Zhejiang Province were compared through regional experiments. The results showed that the foliar application of multiple compound conditioner could increase rice yield by 8.2%-10.8% and decrease Cd content of the brown rice by 15.7%-20.3%. Among them, YY17 combined with the foliar application of multiple compound conditioner had the lowest Cd content in the brown rice. These results indicate that the combination of low accumulation varieties and the selected multiple compound conditioner could effectively reduce the Cd content in brown rice, achieve the safe utilization of farmland with slight Cd pollution, and promote the yield and efficiency of rice production.



Key wordsheavy metal      foliar fertilizer      field experiment      yield      ion antagonism     
Received: 15 February 2021      Published: 25 December 2021
CLC:  X 53  
Corresponding Authors: Yuanjun NI,Ying FENG     E-mail: 17863807350@163.com;391733495@qq.com;yfeng@zju.edu.cn
Cite this article:

Qiyao ZHOU,Yuanjun NI,Shun’an XU,Qiong WANG,Lichuan ZHAN,Ying FENG. Effects of foliar conditioners on safety production of main rice varieties in cadmium-contaminated farmland in eastern Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 768-776.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.02.151     OR     http://www.zjujournals.com/agr/Y2021/V47/I6/768


叶面调理剂对浙江东部镉污染农田水稻主栽品种安全生产的影响

为降低作物可食部的重金属含量,实现中轻度污染农田安全利用,通过连续2年的田间试验,比较了不同离子拮抗型叶面调理剂的作用效应及优选的调理剂对水稻安全生产的影响。田间小区试验结果表明,供试的5种叶面调理剂在2个试验点均有明显的降镉(Cd)增产作用,其中以喷施多元复合叶面调理剂降低稻米Cd含量的效果最佳,2个试验点糙米Cd含量分别降低13.0%和14.5%。进一步通过田间大区试验比较叶面喷施该多元复合调理剂对浙江东部7个主栽水稻品种产量和稻米Cd含量的影响发现,喷施该叶面调理剂可增产8.2%~10.8%,糙米Cd含量下降15.7%~20.3%,其中以YY17配施叶面调理剂处理的糙米Cd含量最低。这些结果说明,低积累品种配施多元复合调理剂可以有效降低糙米Cd含量,在实现Cd轻度污染农田安全利用的同时促进水稻生产的增产增效。


关键词: 重金属,  叶面肥,  田间试验,  产量,  离子拮抗 

试验点

Site

pH

有机质

Organic matter/

(g/kg)

全氮

Total N/

(g/kg)

速效钾

Available K/

(mg/kg)

有效磷

Available P/

(mg/kg)

Cd/

(mg/kg)

Cr/

(mg/kg)

Pb/

(mg/kg)

As/

(mg/kg)

Hg/

(mg/kg)

A4.7441.132.2576.906.580.36±0.2270.40±15.4740.58±6.172.86±0.920.38±0.18
B4.5532.342.1241.203.320.32±0.0558.53±26.4732.71±18.361.92±1.050.25±0.23
Table 1 Basic physicochemical properties and heavy metal contents of cultivated soil samples in experimental sites

编号

Number

品种名称

Variety name

种类

Type

生育期

Growth stage/d

YY1540甬优1540籼粳杂交稻118.9
YY538甬优538籼粳杂交稻153.5
YY9甬优9号粳型三系杂交水稻152.7
YY15甬优15号籼粳杂交中稻151.2
YY17甬优17号籼粳杂交晚稻153.2
XS519秀水519特早熟晚粳常规稻123.3
N84宁84单季晚粳稻156.8
Table 2 Rice varieties

编号

Number

名称

Name

制备方法

Preparation method

施用量

Application amount

1CK清水5 L/小区(40 m2
2硫酸锌调理剂硫酸锌7.5 g,稀释至5 L5 L/小区(40 m2
3强化锌调理剂硫酸锌7.5 g+有机硅表面活性剂0.4 mL,稀释至5 L5 L/小区(40 m2
4纳米硅肥调理剂纳米硅肥(成品)15 g,稀释至10 L10 L/小区(40 m2
5强化硅锌调理剂硅酸钠4 g+硫酸锌5 g+有机硅表面活性剂0.8 mL,稀释至5 L5 L/小区(40 m2
6多元复合调理剂硼砂5 g+硫酸锌5 g+硫酸亚铁5 g+有机硅表面活性剂0.4 mL,稀释至5 L5 L/小区(40 m2
Table 3 Preparation and treatment of tested foliar conditioners

试验点

Site

处理

Treatment

单株生物量

Biomass per plant/g

单株穗质量

Panicle mass per plant/g

产量

Yield/(kg/667 m2)

ACK202.93±32.88b21.97±3.51b177.7±14.3b
硫酸锌调理剂213.07±21.04ab22.41±6.21a181.6±7.4ab
强化锌调理剂221.75±30.22ab23.97±5.53a183.3±10.7ab
纳米硅肥调理剂236.21±31.17a26.06±6.23a192.4±11.7a
强化硅锌调理剂227.45±26.89ab22.51±5.76a185.8±9.9ab
多元复合调理剂224.44±31.35ab22.99±1.17ab189.0±2.0a
BCK312.13±65.21b52.72±8.43b613.4±11.7b
硫酸锌调理剂343.28±94.23ab56.83±10.07ab652.0±12.2ab
强化锌调理剂331.28±55.87ab54.07±6.34ab624.6±18.6b
纳米硅肥调理剂381.52±48.89a61.35±10.91a676.2±9.1a
强化硅锌调理剂368.55±105.33a66.01±9.33a631.0±13.9ab
多元复合调理剂375.31±43.41a64.67±10.13a661.0±15.2a
Table 4 Yield characters of rice treated with different foliar conditioners

试验点

Site

处理

Treatment

糙米

Brown rice

谷壳

Rice husk

穗轴

Rachis

秸秆

Straw

ACK0.077±0.013a0.129±0.012a0.152±0.002ab0.184±0.019a
硫酸锌调理剂0.071±0.014a0.125±0.011a0.161±0.007a0.173±0.014ab
强化锌调理剂0.073±0.012a0.119±0.009ab0.149±0.003ab0.158±0.009b
纳米硅肥调理剂0.074±0.014a0.114±0.004b0.141±0.003ab0.187±0.014a
强化硅锌调理剂0.070±0.012a0.121±0.007a0.145±0.010ab0.157±0.007b
多元复合调理剂0.067±0.011a0.117±0.006ab0.143±0.005ab0.151±0.009b
BCK0.076±0.014a0.129±0.018a0.136±0.012a0.172±0.013a
硫酸锌调理剂0.070±0.015ab0.125±0.013a0.131±0.017a0.162±0.013ab
强化锌调理剂0.071±0.012a0.121±0.014a0.132±0.013a0.158±0.007b
纳米硅肥调理剂0.072±0.014a0.105±0.011b0.120±0.013b0.166±0.013a
强化硅锌调理剂0.068±0.013ab0.118±0.009ab0.118±0.010b0.162±0.006ab
多元复合调理剂0.065±0.013b0.114±0.012ab0.125±0.005ab0.155±0.005b
Table 5 Cd contents of different parts of rice treated with different foliar conditioners
Fig. 1 Effects of the foliar conditioners on biomass per plant (A) and yield (B) of different rice varietiesDifferent lowercase letters above the bars indicate significant differences between different treatments at the 0.05 probability level.
Fig. 2 Effects of the foliar conditioners on Cd contents in brown rice (A), rice husk (B), rachis (C), straw (D) of different rice varietiesDifferent lowercase letters above the bars indicate significant differences between different treatments at the 0.05 probability level.
[1]   环境保护部.全国土壤污染状况调查公报.[2021-02-10]. . DOI:10.33278/sae-2014.vol.2
Ministry of Environmental Protection. Bulletin of the national survey of soil pollution. [2021-02-10]. (in Chinese)
doi: 10.33278/sae-2014.vol.2
[2]   敖明,柴冠群,刘桂华,等.水稻对镉的吸收与转运规律研究进展.南方农业,2018,12(24):127-128, 131. DOI:10.19415/j.cnki.1673-890x.2018.24.068
AO M, CHAI G Q, LIU G H, et al. Research progress of cadmium uptake and transport in rice. South China Agriculture, 2018,12(24):127-128, 131. (in Chinese)
doi: 10.19415/j.cnki.1673-890x.2018.24.068
[3]   郑陶,李廷轩,张锡洲,等.水稻镉高积累品种对镉的富集特性.中国农业科学,2013,46(7):1492-1500. DOI:10.3864/j.issn.0578-1752.2013.07.020
ZHENG T, LI T X, ZHANG X Z, et al. Accumulation characteristics of cadmium-accumulated rice cultivars with high cadmium accumulation. Scientia Agricultura Sinica, 2013,46(7):1492-1500. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.07.020
[4]   王萍,罗沐欣键,刘静,等.不同水平Cd胁迫下低累积Cd水稻品种筛选.中国稻米,2021,27(1):75-79. DOI:10.3969/j.issn.1006-8082.2021.01.014
WANG P, LUO M X J, LIU J, et al. Screening of rice varieties with low accumulated Cd under different levels of Cd stress. China Rice, 2021,27(1):75-79. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2021.01.014
[5]   陈德,叶雪珠,张棋,等.不同水稻品种对Cd、Zn的积累特性.浙江农业科学,2020,61(10):2113-2118, 2121. DOI:10.16178/j.issn.0528-9017.20201048
CHEN D, YE X Z, ZHANG Q, et al. Accumulation characteristics of Cd and Zn in different rice varieties. Journal of Zhejiang Agricultural Sciences, 2020,61(10):2113-2118, 2121. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20201048
[6]   于焕云,崔江虎,乔江涛,等.稻田镉砷污染阻控原理与技术应用.农业环境科学学报,2018,37(7):1418-1426. DOI:10.11654/jaes.2018-0730
YU H Y, CUI J H, QIAO J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field. Journal of Agro-Environment Science, 2018,37(7):1418-1426. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-0730
[7]   LIU J H, HOU H, ZHAO L, et al. Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P. Science of the Total Environment, 2019,690:321-328. DOI:10.1016/j.scitotenv.2019.06.332
doi: 10.1016/j.scitotenv.2019.06.332
[8]   龙思斯,宋正国,雷鸣,等.不同阻控剂阻控重度Cd污染区水稻富集Cd的效果.中国稻米,2017,23(3):30-34. DOI:10.3969/j.issn.1006-8082.2017.03.007
LONG S S, SONG Z G, LEI M, et al. Effects of different inhibitors on reducing cadmium content of rice. China Rice, 2017,23(3):30-34. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2017.03.007
[9]   GAO M, ZHOU J, LIU H L, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 2018,631/632:1100-1108. DOI:10.1016/j.scitotenv.2018.03.047
doi: 10.1016/j.scitotenv.2018.03.047
[10]   裴福云,裴东辉,林晓燕,等.纳米硅阻隔水稻吸收重金属的研究.纳米科技,2017,16(1):41-46.
PEI F Y, PEI D H, LIN X Y, et al. Study on the barrier of rice absorbing heavy metals by nano silicon. Nanoscience & Nanotechnology, 2017,16(1):41-46. (in Chinese)
[11]   刘永贤,潘丽萍,黄雁飞,等.外源喷施硒与硅对水稻籽粒镉累积的影响.西南农业学报,2017,30(7):1588-1592. DOI:10.16213/j.cnki.scjas.2017.7.021
LIU Y X, PAN L P, HUANG Y F, et al. Effects of selenium or silicon foliar fertilizer on cadmium accumulation in rice. Southwest China Journal of Agricultural Sciences, 2017,30(7):1588-1592. (in Chinese with English abstract)
doi: 10.16213/j.cnki.scjas.2017.7.021
[12]   韩潇潇,任兴华,王培培,等.叶面喷施锌离子对水稻各器官镉积累特性的影响.农业环境科学学报,2019,38(8):1809-1817. DOI:10.11654/jaes.2018-1528
HAN X X, REN X H, WANG P P, et al. Effects of foliar application with zinc on the characteristics of cadmium accumulation in organs of rice plants. Journal of Agro-Environment Science, 2019,38(8):1809-1817. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-1528
[13]   索炎炎,吴士文,朱骏杰,等.叶面喷施锌肥对不同镉水平下水稻产量及元素含量的影响.浙江大学学报(农业与生命科学版),2012,38(4):449-458. DOI:10.3785/j.issn.1008-9209.2012.04.013
SUO Y Y, WU S W, ZHU J J, et al. Effects of foliar Zn application on rice yield and element contents under different Cd levels. Journal of Zhejiang University (Agriculture and Life Sciences), 2012,38(4):449-458. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2012.04.013
[14]   DESHPANDE P, DAPKEKAR A, OAK M D, et al. Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers, 2017,165:394-401. DOI:10.1016/j.carbpol.2017.02.061
doi: 10.1016/j.carbpol.2017.02.061
[15]   邓思涵,龙九妹,陈聪颖,等.叶面肥阻控水稻富集镉的研究进展.中国农学通报,2020,36(1):1-5. DOI:10.11924/j.issn.1000-6850.casb18080003
DENG S H, LONG J M, CHEN C Y, et al. Foliar fertilizers mitigate cadmium accumulation in rice: a review. Chinese Agricultural Science Bulletin, 2020,36(1):1-5. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18080003
[16]   鲍士旦.土壤农化分析.北京:中国农业出版社,2007.
BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2007. (in Chinese)
[17]   鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
LU R K. Agrochemical Analysis of Soil. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[18]   LIU Y M, LIU D Y, ZHANG W, et al. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environmental Pollution, 2020,257:113581. DOI:10.1016/j.envpol.2019.113581
doi: 10.1016/j.envpol.2019.113581
[19]   郭九信,廖文强,孙玉明,等.锌肥施用方法对水稻产量及籽粒氮锌含量的影响.中国水稻科学,2014,28(2):185-192. DOI:10.3969/j.issn.1001-7216.2014.02.010
GUO J X, LIAO W Q, SUN Y M, et al. Effects of Zn fertilizer application methods on yield and contents of N and Zn in grains of rice. Chinese Journal of Rice Science, 2014,28(2):185-192. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2014.02.010
[20]   张国良,戴其根,张洪程,等.水稻硅素营养研究进展.江苏农业科学,2003(3):8-12. DOI:10.3969/j.issn.1002-1302.2003.03.003
ZHANG G L, DAI Q G, ZHANG H C, et al. Research progress of silicon nutrition in rice. Jiangsu Agricultural Sciences, 2003(3):8-12. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2003.03.003
[21]   WANG Y F, ZHANG K, LU L, et al. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. Environmental Pollution, 2020,265(Part B):114772. DOI:10.1016/j.envpol.2020.114772
doi: 10.1016/j.envpol.2020.114772
[22]   刘奇华,孙召文,信彩云,等.叶面施硅对水稻干物质生产及产量的影响.山东农业科学,2017,49(5):86-87. DOI:10.14083/j.issn.1001-4942.2017.05.018
LIU Q H, SUN Z W, XIN C Y, et al. Effects of foliar application of silicon on dry matter production and grain yield of rice. Shandong Agricultural Sciences, 2017,49(5):86-87. (in Chinese with English abstract)
doi: 10.14083/j.issn.1001-4942.2017.05.018
[23]   吕倩,吴良欢,徐建龙,等.叶面喷施氨基酸铁肥对稻米铁含量和营养品质的影响.浙江大学学报(农业与生命科学版),2010,36(5):528-534. DOI:10.3785/j.issn.1008-9209.2010.05.008
Lü Q, WU L H, XU J L, et al. Effects of foliar iron amino acids fertilizer on iron content and nutrition quality of rice grain. Journal of Zhejiang University (Agriculture and Life Sciences), 2010,36(5):528-534. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2010.05.008
[24]   KOBAYASHI T, NOZOYE T, NISHIZAWA N K, et al. Iron transport and its regulation in plants. Free Radical Biology Medicine, 2019,133:11-20. DOI:10.1016/j.freeradbiomed.2018.10.439
doi: 10.1016/j.freeradbiomed.2018.10.439
[25]   胡燕燕,纪春茹,周晓勇.硼肥对水稻产量和品质的影响.现代化农业,2019(1):20-21. DOI:10.3969/j.issn.1001-0254.2019.01.011
HU Y Y, JI C R, ZHOU X Y. Effect of boron fertilizer on yield and quality of rice. Modernizing Agriculture, 2019(1): 20-21. (in Chinese)
doi: 10.3969/j.issn.1001-0254.2019.01.011
[26]   UR-REHMAN A, FAROOQ M, NAWAZ A, et al. Influence of boron nutrition on the rice productivity, kernel quality and biofortification in different production systems. Field Crops Research, 2014,169:123-131. DOI:10.1016/j.fcr.2014.09.010
doi: 10.1016/j.fcr.2014.09.010
[27]   PUPPE D, SOMMER M. Experiments, uptake mechanisms, and functioning of silicon foliar fertilization: a review focusing on maize, rice, and wheat. Advances in Agronomy, 2018,152:1-49. DOI:10.1016/bs.agron.2018.07.003
doi: 10.1016/bs.agron.2018.07.003
[28]   SARWAR N, ISHAQ W, FARID G, et al. Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicology and Environmental Safety, 2015,122:528-536. DOI:10.1016/j.ecoenv.2015.09.011
doi: 10.1016/j.ecoenv.2015.09.011
[29]   DUAN M M, WANG S, HUANG D Y, et al. Effectiveness of simultaneous applications of lime and zinc/iron foliar sprays to minimize cadmium accumulation in rice. Ecotoxicology and Environmental Safety, 2018,165:510-515. DOI:10.1016/j.ecoenv.2018.09.037
doi: 10.1016/j.ecoenv.2018.09.037
[30]   HUSSAIN A, ALI S, RIZWAN M, et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 2018,242:1518-1526. DOI:10.1016/j.envpol.2018.08.036
doi: 10.1016/j.envpol.2018.08.036
[31]   徐建明,汪鑫,罗玉明,等.两种形态硼对小麦幼苗叶绿素荧光参数及保护酶活性的影响.华北农学报,2010,24(2):149-155. DOI:10.7668/hbnxb.2010.02.030
XU J M, WANG X, LUO Y M, et al. Effects of two forms of boron on antioxidant enzymes and chlorophyll fluorescence parameters of and protective enzyme activities of wheat seedlings. Acta Agriculturae Boreali-Sinica, 2010,24(2):149-155. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2010.02.030
[1] Bo YANG,Bo ZHANG,Peijie YAN,Yingjie WANG,Juandi WU,Yu ZHANG,Shunyu HAN. Spatial distribution characteristics and risk assessment of soil heavy metals in wine-making vineyard in Jiayuguan City, Gansu Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 777-786.
[2] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[3] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[4] Wenbin TONG,Xuerui CAO,Jianfeng JIANG,Xiaozi WANG,Guoqun LIU,Jianzhong SONG,Zehra AFSHEEN,Xiao’e YANG. Study on the remediation patterns of rotation or intercropping between hyperaccumulator Sedum alfredii and oil crops in cadmium and lead co-contaminated agricultural soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 212-222.
[5] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[6] Yu FU,Peng ZHANG,Junli REN,Xiumei SUN,Qing HAO,Chenghu YANG. Effect of pyrolysis temperature on characteristics of heavy metals in different macroalgal biochars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 727-736.
[7] Meihua DENG,Youwei ZHU,Lili DUAN,Jing SHEN,Ying FENG. Analysis on integrated remediation model of phytoremediation coupled with agro-production for heavy metal pollution in farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 135-150.
[8] Xufeng FEI,Zhouqiao REN,Zhaohan LOU,Rui XIAO,Xiaonan Lü. Prediction of soil heavy metal content under spatial scale based on Bayesian maximum entropy and auxiliary information[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 452-459.
[9] Lai WEI,Mingyan YU,Nannan QIN,Chongping HUANG,Ying XIE,Wenbo SUN,Liehong WU,Weizhong WANG,Guoxin WANG. Effects of agro-photovoltaic integrating system on field illumination and sweet potato growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 288-295.
[10] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[11] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[12] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[13] JIANG Jingjing, CHANG Xiaoxiao, HU Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 678-686.
[14] XIANG Jie, WANG Fuqiang, GUO Baoguang, WANG Qinggang, YU Chengqun, SHEN Zhenxi, SHAO Xiaoming. Effects of mixtures and intercropping of common vetch and oat in valley area of Tibet on the yield and quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 555-564.
[15] LUO Jipeng, TAO Qi, WU Keren, LI Tingqiang. Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 515-529.