Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 310-320    DOI: 10.3785/j.issn.1008-9209.2021.04.161
Horticultural sciences     
Effects of maize plant type and row width on photosynthetic characteristics and yield of ginger under maize/ginger intercropping mode
Kaiyou ZHENG(),Yun REN,Honglei LI,Jing LIU,Qiang LI()
Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China
Download: HTML   HTML (   PDF(2227KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study attempted to explore the effects of maize plant type and row width on the light environment, chlorophyll content, photosynthetic performance, growth characteristics and yield of ginger under the maize/ginger intercropping mode. A total of eight treatments were set, including two plant types of maize cultivars [expanded cultivar ‘Zhenghong 311’ (ZH 311), and compact cultivar ‘Zhenghong 2’ (ZH 2)], three row widths (2, 3, and 4 m), and two controls (sole cropping of ginger under shading, CK1; sole cropping of ginger without shading, CK2). The results indicated that shading could increase the chlorophyll content of leaves, maintain a low chlorophyll (Chl) a/b ratio, improve the photosynthetic performance of ginger leaves, so as to promote the growth of plant height, stem diameter and branching number, and obtain a high yield. The plant height, stem diameter, branching number, yield, contents of Chl a, Chl b, total chlorophyll and carotenoid, total chlorophyll/carotenoid ratio, net photosynthetic rate, stomatal conductance, and transpiration rate of ginger under the maize/ginger intercropping mode were higher than those of CK2, while the light transmittance of ginger canopy and bottom, Chl a/b ratio, and intercellular CO2 concentration were lower than those of CK2. In summary, the shading effects of maize/ginger intercropping on ginger are significantly different in maize plant type and row width. The expanded maize cultivar with 2 m row width has the best shading effect on ginger.



Key wordsintercropping      maize plant type      row width      ginger      photosynthetic characteristics      yield     
Received: 16 April 2021      Published: 07 July 2022
CLC:  S 632.5  
Corresponding Authors: Qiang LI     E-mail: 1335196898@qq.com;liqiangxj@163.com
Cite this article:

Kaiyou ZHENG,Yun REN,Honglei LI,Jing LIU,Qiang LI. Effects of maize plant type and row width on photosynthetic characteristics and yield of ginger under maize/ginger intercropping mode. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 310-320.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.04.161     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/310


玉米/生姜套作模式下玉米株型与行宽对生姜光合特性及产量的影响

采用玉米/生姜套作模式,以‘竹根姜’为研究对象,设置2种玉米株型(平展型玉米‘正红311’和紧凑型玉米‘正红2号’)、3种行宽(2、3、4 m)和2个生姜净作对照(净作遮光,CK1;净作未遮光,CK2),共计8个处理,研究玉米株型与行宽对玉米/生姜套作模式下生姜光环境、叶绿素含量、光合性能、生长特性及产量的影响。结果表明,遮光可以提高生姜叶绿素含量,降低叶绿素a/b比值,改善叶片光合性能,从而改善其株高、茎粗及分枝数,最终获得高产。玉米/生姜套作模式下生姜株高、茎粗、分枝数、产量,叶绿素a、叶绿素b、总叶绿素、类胡萝卜素含量,总叶绿素/类胡萝卜素比值、净光合速率、气孔导度、蒸腾速率均高于未遮光处理,而生姜冠层与底层透光率、叶绿素a/b比值及胞间CO2浓度均低于未遮光处理。综上所述,玉米/生姜套作对生姜的遮光效果存在显著的玉米株型和行宽差异,其中,平展型玉米‘正红311’在2 m行宽处理下对生姜的遮光效果最好。


关键词: 套作,  玉米株型,  行宽,  生姜,  光合特性,  产量 
品种 Cultivar株型 Plant type株高 Plant height/cm穗长 Ear length/cm生育期 Growth period/d
正红311 ZH 311平展型29019.5115
正红2号 ZH 2紧凑型27017.8110
Table 1 Characteristics of tested maize cultivars
Fig. 1 Meteorological conditions during ginger growth period
Fig. 2 Schematic diagram of maize/ginger intercropping in the fieldUnder the 2 m row width, the row spacings between maize and ginger, ginger and ginger were 0.40 m, respectively; under the 3 m row width, the row spacings between maize and ginger, ginger and ginger were 0.43 m, respectively; and under the 4 m row width, the row spacings between maize and ginger, ginger and ginger were 0.40 m, respectively.

处理

Treatment

冠层透光率

Light transmittance of canopy/%

底层透光率

Light transmittance of bottom/%

2017201820172018
A178.95c80.29e30.98e36.31d
A291.28b89.95c37.88d40.55c
A397.90a96.90a50.08b49.74b
平均值 Average89.38A89.05B39.65B42.20B
B186.95b85.62d35.17d40.84c
B290.09b92.42b45.18c47.22b
B399.24a98.45a53.91a55.47a
平均值 Average92.09A92.16A44.75A47.84A
IC90.74b90.60b42.20b45.02b
CK150.06c49.18c15.54c18.25c
CK298.70a99.58a59.24a61.53a
FF value
年份 Year (Y)0.038.55**
品种 Cultivar (C)13.85**30.95**
行宽 Row width (R)125.26**97.88**
年份×品种 Y×C0.070.08
年份×行宽 Y×R0.272.19
品种×行宽 C×R5.84**0.71
年份×品种×行宽 Y×C×R1.370.15
Table 2 Light transmittance of ginger canopy and bottom under different treatments
Fig. 3 Plant height differences of ginger under different intercropping modesDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level, and the same as below.
Fig. 4 Stem diameter differences of ginger under different intercropping modes
Fig. 5 Branching number differences of ginger under different intercropping modes

处理

Treatment

叶绿素a

Chl a/(mg/g)

叶绿素b Chl b/(mg/g)总叶绿素 Total Chl/(mg/g)

类胡萝卜素

Carotenoid/(mg/g)

叶绿素a/b比值

Chl a/b ratio

总叶绿素/ 类胡萝卜素比值 Total Chl/carotenoid ratio
2017A11.28a0.50a1.78a0.33ab2.58d5.46a
A21.03c0.31b1.34c0.33ab3.33c4.09b
A30.95d0.20d1.15e0.30c4.82b3.78c
平均值 Average1.09A0.34A1.42A0.32A3.58B4.44A
2017B11.23b0.50a1.72b0.33ab2.47d5.30a
B20.99d0.29c1.28d0.34a3.41c3.76c
B30.90e0.17e1.07f0.32bc5.39a3.39d
平均值 Average1.04B0.32B1.36B0.33A3.76A4.18B
2017IC1.06b0.33b1.39b0.32b3.67b4.30b
CK11.33a0.49a1.82a0.34a2.53c5.38a
CK20.67c0.13c0.80c0.28c5.21a2.81c
2018A11.21a0.48a1.69a0.32ab2.54d5.22a
A21.00c0.30c1.30c0.33a3.29c3.98b
A30.92e0.19e1.11e0.30c4.75b3.67c
平均值 Average1.04A0.32A1.37A0.32A3.53B4.29A
2018B11.17b0.46b1.63b0.32ab2.55d5.14a
B20.94d0.28d1.22d0.33a3.36c3.75bc
B30.88f0.16f1.05f0.31bc5.36a3.34d
平均值 Average1.00B0.30B1.30B0.32A3.76A4.08B
2018IC1.02b0.31b1.33b0.32b3.64b4.19b
CK11.30a0.49a1.80a0.34a2.47c5.24a
CK20.63c0.13c0.76c0.28c5.02a2.75c
FF value
年份 Year (Y)39.71**25.75**62.64**2.650.277.53**
品种 Cultivar (C)45.41**55.15**84.57**1.9915.08**38.53**
行宽 Row width (R)739.90**4 283.78**2 531.84**16.30**804.87**681.72**
年份×品种 Y×C0.281.240.010.940.260.96
年份×行宽 Y×R2.329.18**6.63**0.250.251.14
品种×行宽 C×R0.104.57**0.332.0713.70**3.01
年份×品种×行宽 Y×C×R0.390.950.230.260.120.02
Table 3 Differences of chlorophyll (Chl) and carotenoid contents in ginger leaves under different treatments

处理

Treatment

Pn /(μmol/(m2·s))Gs /(mol/(m2·s))Tr /(mmol/(m2·s))Ci /(μmol/mol)
2017A14.71a0.51a4.75a417.54c
A23.55c0.44b3.86c424.46b
A33.06d0.33d2.93e439.56a
平均值 Average3.77A0.43A3.85A427.19B
2017B14.55b0.49a4.24b422.90b
B23.46c0.42c3.31d438.43a
B32.56e0.31d2.76f441.06a
平均值 Average3.52B0.41B3.43B434.13A
2017IC3.65b0.42b3.64b430.66b
CK15.27a0.48a5.12a407.42c
CK22.18c0.24c2.55c447.47a
2018A14.62a0.51a4.90a413.54c
A23.65b0.43b4.08c418.79c
A33.20d0.34c3.15e433.59a
平均值 Average3.82A0.43A4.04A421.97A
2018B14.49a0.49a4.43b419.62bc
B23.48c0.41b3.56d427.93ab
B32.71e0.33c3.18e433.73a
平均值 Average3.56B0.41A3.72B427.09A
2018IC3.69b0.42b3.88b424.53a
CK15.20a0.51a5.15a394.09b
CK22.19c0.26c2.63c438.47a
FF value
年份 Year (Y)3.190.0189.51**12.85**
品种 Cultivar (C)101.16**8.28**208.92**12.46**
行宽 Row width (R)1 523.80**216.19**1 290.42**39.44**
年份×品种 Y×C0.030.013.380.29
年份×行宽 Y×R6.77*0.762.800.59
品种×行宽 C×R21.85**0.1133.80**3.30
年份×品种×行宽 Y×C×R0.470.031.250.23
Table 4 Differences of photosynthetic characteristic parameters of ginger leaves under different treatments
Fig. 6 Yield differences of ginger under different intercropping modes
[1]   CORRIGAN D. Zingiber Officinale[M]. Berlin, Germany: Springer, 1997: 215-228. DOI:10.1007/978-3-642-60367-9_19
doi: 10.1007/978-3-642-60367-9_19
[2]   李秀,徐坤,巩彪. 生姜种质遗传多样性和亲缘关系的SRAP分析[J].中国农业科学,2014,47(4):718-726. DOI:10.3864/j.issn.0578-1752.2014.04.012
LI X, XU K, GONG B. Genetic diversity and phylogenetic relationship of ginger germplasm resources revealed by SRAPs[J]. Scientia Agricultura Sinica, 2014, 47(4): 718-726. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.04.012
[3]   刘波,缪军,吴雄.生姜研究进展[J].黑龙江农业科学,2011(5):135-138. DOI:10.3969/j.issn.1002-2767.2011.05.045
LIU B, MIAO J, WU X. Research progress of ginger[J]. Heilongjiang Agricultural Sciences, 2011(5):135-138. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2767.2011.05.045
[4]   吴曼,赵帮宏,宗义湘.世界生姜生产布局与贸易格局分析[J].北方园艺,2019(10):141-150. DOI:10.11937/bfyy.20183386
WU M, ZHAO B H, ZONG Y X. Analysis of world ginger production layout and trade pattern[J]. Northern Horticulture, 2019(10): 141-150. (in Chinese with English abstract)
doi: 10.11937/bfyy.20183386
[5]   郝风,李启波,康月琼,等.重庆荣昌生姜产业现状及发展对策研究[J].江西农业学报,2009,21(2):183-184. DOI:10.3969/j.issn.1001-8581.2009.02.060
HAO F, LI Q B, KANG Y Q, et al. Study on the current situation and development countermeasures of ginger industry in Rongchang, Chongqing[J]. Acta Agriculturae Jiangxi, 2009, 21(2): 183-184. (in Chinese)
doi: 10.3969/j.issn.1001-8581.2009.02.060
[6]   陈正明,战博,杨守正,等.农业综合开发支持优势特色产业发展研究:以重庆市为例[J].农业开发与装备,2016(12):2-3.
CHEN Z M, ZHAN B, YANG S Z, et al. Research on comprehensive agricultural development supporting the development of dominant and characteristic industries: a case study of Chongqing[J]. Agricultural Development and Equipment, 2016(12): 2-3. (in Chinese)
[7]   唐学军,黄盛,李晓晖,等.组培生姜高温条件下覆盖不同遮光率遮阳网试验初报[J].南方园艺,2014,25(6):31-32. DOI:10.3969/j.issn.1674-5868.2014.06.011
TANG X J, HUANG S, LI X H, et al. Preliminary report on the experiment of tissue culture ginger covered with shading nets with different shading rates under high temperature conditions[J]. Southern Horticulture, 2014, 25(6): 31-32. (in Chinese)
doi: 10.3969/j.issn.1674-5868.2014.06.011
[8]   张瑞华,徐坤.苗期遮光光质对生姜光合及生长的影响[J].应用生态学报,2008,19(3):499-504.
ZHANG R H, XU K. Effects of shading light quality at seedling stage on the photosynthesis and growth of ginger[J]. Chinese Journal of Applied Ecology, 2008, 19(3): 499-504. (in Chinese with English abstract)
[9]   程建徽,陈红星,陈再宏,等.葡萄稀植改型与架下套种生姜与九头芥栽培技术[J].现代农业科技,2018(7):97,100. DOI:10.3969/j.issn.1007-5739.2018.07.063
CHENG J H, CHEN H X, CHEN Z H, et al. Cultivation techniques of rare-planting grape and intercropping with ginger and leaf mustard under trellis[J]. Modern Agricultural Science and Technology, 2018(7): 97, 100. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2018.07.063
[10]   郭建喜,宁鸿山.百合套种生姜栽培技术[J].江西农业科技,2004(10):19-20.
GUO J X, NING H S. Cultivation techniques of lily intercropping with ginger[J]. Jiangxi Agricultural Science and Technology, 2004(10): 19-20. (in Chinese)
[11]   苏登峰.百香果套种生姜双丰收高产栽培技术[J].南方农业,2015,9(33):46-48.
SU D F. High yield cultivation techniques of passion fruit/ginger intercropping[J]. South China Agriculture, 2015, 9(33): 46-48. (in Chinese)
[12]   李强,孔凡磊,袁继超.氮肥运筹对不同氮效率玉米品种干物质生产及产量的影响[J].华北农学报,2018,33(6):174-182. DOI:10.7668/hbnxb.2018.06.024
LI Q, KONG F L, YUAN J C. Effects of nitrogen fertilizer operation on dry matter production and yield of maize cultivars with contrasting nitrogen efficiency[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 174-182. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2018.06.024
[13]   SRIVASTAVA R K, PANDA R K, CHAKRABORTY A, et al. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions[J]. Field Crops Research, 2018, 221: 339-349. DOI:10.1016/j.fcr.2017.06.019
doi: 10.1016/j.fcr.2017.06.019
[14]   高仁才,杨峰,廖敦平,等.行距配置对套作大豆冠层光环境及其形态特征和产量的影响[J].大豆科学,2015,34(4):611-615. DOI:10.11861/j.issn.1000-9841.2015.04.0611
GAO R C, YANG F, LIAO D P, et al. Effects of different row spacings of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system[J]. Soybean Science, 2015, 34(4): 611-615. (in Chinese with English abstract)
doi: 10.11861/j.issn.1000-9841.2015.04.0611
[15]   宋艳霞,杨文钰,李卓玺,等.不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮阴的响应[J].中国油料作物学报,2009,31(4):474-479.
SONG Y X, YANG W Y, LI Z X, et al. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedling under maize-soybean relay cropping[J]. Chinese Journal of Oil Crop Science, 2009, 31(4): 474-479. (in Chinese with English abstract)
[16]   肖关丽,龙雯虹,赵鹏,等.玉米-甘薯间作的光合效应及产量研究[J].云南农业大学学报,2013,28(1):52-55. DOI:10.3969/j.issn.1004-390X(n).2013.01.009
XIAO G L, LONG W H, ZHAO P, et al. Photosynthetic characteristics and yield of corn and sweet potato in monoculture and intercropping[J]. Journal of Yunnan Agricultural University, 2013, 28(1): 52-55. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-390X(n).2013.01.009
[17]   ZHANG D S, SUN Z X, FENG L S, et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping[J]. Field Crops Research, 2020, 257: 107926. DOI:10.1016/j.fcr.2020.107926
doi: 10.1016/j.fcr.2020.107926
[18]   李盛蓝,谭婷婷,范元芳,等.玉米荫蔽对大豆光合特性与叶脉、‍‍‍气孔特征的影响[J].中国农业科学,201 9,52(21):3782-3793. DOI:10.3864/j.issn.0578-1752.2019.21.007
LI S L, TAN T T, FAN Y F, et al. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean[J]. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. (in Chinese with English abstract)
[19]   刘婷,刘卫国,任梦露,等.遮阴程度对不同耐阴性大豆品种光合及抗倒程度的影响[J].中国农业科学,2016,49(8):1466-1475. DOI:10.3864/j.issn.0578-1752.2016.08.004
LIU T, LIU W G, REN M L, et al. Effects of shade degrees on photosynthesis and lodging resistance degree of different shade tolerance soybean[J]. Scientia Agricultura Sinica, 2016, 49(8): 1466-1475. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.08.004
[20]   范元芳,杨峰,何知舟,等.套作大豆形态、‍光合特征对玉米荫蔽及光照恢复的响应[J].中国生态农业学报,2016,24(5):608-617. DOI:10.13930/j.cnki.cjea.151266
FAN Y F, YANG F, HE Z Z, et al. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 608-617. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.151266
[21]   黄承建,赵思毅,王龙昌,等.马铃薯/玉米套作对马铃薯品种光合特性及产量的影响[J].作物学报,2013,39(2):330-342. DOI:10.3724/SP.J.1006.2013.00330
HUANG C J, ZHAO S Y, WANG L C, et al. Effect of potato/maize intercropping on photosynthetic characteristics and yield in two potato varieties[J]. Acta Agronomica Sinica, 2013, 39(2): 330-342. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00330
[22]   范元芳,杨峰,刘沁林,等.套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J].作物学报,2017,43(2):277-285. DOI:10.3724/SP.J.1006.2017.00277
FAN Y F, YANG F, LIU Q L, et al. Effects of shading on leaf structure and photosynthetic fluorescence characteristics of soybean seedlings in maize-soybean relay intercropping system[J]. Acta Agronomica Sinica, 2017, 43(2): 277-285. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00277
[23]   王秋媛.不同株型玉米对套作甘薯光合生理特性及产量的影响[D].重庆:西南大学,2015.
WANG Q Y. Effects of different plant-type maize on photosynthetic physiological characteristics and yield of relay-cropping sweet potato[D]. Chongqing: Southwest University, 2015. (in Chinese with English abstract)
[24]   王小春,杨文钰,邓小燕,等.玉米/大豆和玉米/甘薯模式下玉米光合特性差异及氮肥调控效应[J].中国生态农业学报,2015,23(2):141-149. DOI:10.13930/j.cnki.cjea.140740
WANG X C, YANG W Y, DENG X Y, et al. Differences in maize photosynthetic characteristics and nitrogen regulation effects in maize/soybean and maize/sweet potato relay strip intercropping[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2): 141-149. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.140740
[25]   徐强,程智慧,卢涛,等.线辣椒/玉米带状套作的光能截获和利用特征[J].中国生态农业学报,2010,18(5):969-976. DOI:10.3724/SP.J.1011.2010.00969
XU Q, CHENG Z H, LU T, et al. Light interception and utilization of maize-capsicum strip relay intercrop[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 969-976. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00969
[26]   于晓波,梁建秋,何泽民,等.玉米-大豆带状套作对大豆叶片形态及光合特性的影响[J].中国油料作物学报, 2016, 38(4):452-459. DOI:10.7505/j.issn.1007-9084.2016.04.007
YU X B, LIANG J Q, HE Z M, et al. Response of leaf morphology and photosynthetic characteristics of soybean in maize-soybean relay strip intercropping system[J]. Chinese Journal of Oil Crop Science, 2016, 38(4): 452-459. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2016.04.007
[27]   王绍辉,张振贤.不同遮阴方式对生姜生长及产量的影响[J].中国蔬菜,1998,1(5):5-8.
WANG S H, ZHANG Z X. Effect of shade on growth and yield of ginger[J]. China Vegetables, 1998,1(5): 5-8. (in Chinese with English abstract)
[28]   崔亮,苏本营,杨峰,等.带状套作大豆群体冠层光能截获与利用特征[J].中国农业科学,2015,48(1):43-54. DOI:10.3864/j.issn.0578-1752.2015.01.05
CUI L, SU B Y, YANG F, et al. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system[J]. Scientia Agricultura Sinica, 2015, 48(1): 43-54. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.01.05
[29]   WU Y W, LI Q, JIN R, et al. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances[J]. Journal of Integrative Agriculture, 2019, 18(6): 1246-1256. DOI:10.1016/S2095-3119(18)62030-1
doi: 10.1016/S2095-3119(18)62030-1
[30]   王绍辉,张振贤,于贤昌.遮阴对生姜生理生化特性的影响[J].西北农业学报,1999,8(2):77-79.
WANG S H, ZHANG Z X, YU X C. Effect of shade on physiological and biochemical characteristics in ginger[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1999, 8(2): 77-79. (in Chinese with English abstract)
[31]   朱萍,杨世民,马均,等.遮光对杂交水稻组合生育后期光合特性和产量的影响[J].作物学报,2008,34(11):2003-2009. DOI:10.3724/SP.J.1006.2008.02003
ZHU P, YANG S M, MA J, et al. Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination[J]. Acta Agronomica Sinica, 2008, 34(11): 2003-2009. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.02003
[1] Huimin LU,Qiwei HUANG,Yixin WU,Yongchao LIANG,Hongyun PENG. Effects of reducing fertilizer and pesticide combined with applying Si-Ca-K-Mg fertilizer on wheat yield, quality, and prevention and control of the wheat scab[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 207-215.
[2] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[3] Qiyao ZHOU,Yuanjun NI,Shun’an XU,Qiong WANG,Lichuan ZHAN,Ying FENG. Effects of foliar conditioners on safety production of main rice varieties in cadmium-contaminated farmland in eastern Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 768-776.
[4] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[5] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[6] Wenbin TONG,Xuerui CAO,Jianfeng JIANG,Xiaozi WANG,Guoqun LIU,Jianzhong SONG,Zehra AFSHEEN,Xiao’e YANG. Study on the remediation patterns of rotation or intercropping between hyperaccumulator Sedum alfredii and oil crops in cadmium and lead co-contaminated agricultural soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 212-222.
[7] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[8] Lai WEI,Mingyan YU,Nannan QIN,Chongping HUANG,Ying XIE,Wenbo SUN,Liehong WU,Weizhong WANG,Guoxin WANG. Effects of agro-photovoltaic integrating system on field illumination and sweet potato growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 288-295.
[9] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[10] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[11] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[12] Shaorong DUAN,Yu ZHENG,Jibin NAN,Sang MI,Yalei ZHAO,Ling LIN. Seedling growth and photosynthetic characteristics of different[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 164-174.
[13] JIANG Jingjing, CHANG Xiaoxiao, HU Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 678-686.
[14] XIANG Jie, WANG Fuqiang, GUO Baoguang, WANG Qinggang, YU Chengqun, SHEN Zhenxi, SHAO Xiaoming. Effects of mixtures and intercropping of common vetch and oat in valley area of Tibet on the yield and quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 555-564.
[15] WANG Guiyue, ZHAO Fucheng, HAN Hailiang, BAO Fei, TAN Heping, YU Qiying. Analysis of yield, quality and resistance of fresh maize cultivars in Zhejiang Province and corresponding breeding objectives[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 343-355.