Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 484-496    DOI: 10.3785/j.issn.1008-9209.2022.09.281
Research articles     
Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.
Shubing CHEN1(),XU Zishu1,Qian HUANG2,Hui ZHANG3,Kangni ZHANG2,Yi DUAN1,Yue’e SUN1,Weijun ZHOU2,Ling XU1()
1.College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Zhejiang Agricultural Technology Extension Center, Hangzhou 310020, Zhejiang, China
Download: HTML   HTML (   PDF(12145KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Myo-inositol oxygenase (MIOX) catalyzes the conversion of myo-inositol to glucuronic acid and plays an important role in response to biotic and abiotic stresses. In this study, the genome-wide identification and expression pattern analysis of the MIOX family gene in Brassica napus L.(BnMIOX) were conducted. The results showed that the BnMIOX family included 12 members distributed across nine chromosomes. According to the characteristics of MIOX gene domain, the phylogenetic tree of B. napus, Arabidopsisthaliana, B. rapa and B. oleracea could be divided into subfamilies Ⅰ, Ⅱ and Ⅲ. No tandem repeat gene pairs were found in the collinearity analysis, and all of them were large segment replication genes, demonstrating that segmental duplication and whole-genome duplication were the main driving forces for the MIOX gene family amplification in B. napus. The transcriptomic data indicated that BnMIOX genes showed different temporal and spatial expression patterns in different tissues and different growth and development processes. Expression profiles under different stresses demonstrated that the expression of BnMIOX1 gene was obviously induced under drought and salt stresses, while BnMIOX1, BnMIOX2, and BnMIOX9 genes had significant responses to drought, salt, abscisic acid (ABA), and cold stresses. The results of the protein interaction network analysis further showed that the BnMIOX interacted with proteins including GLCAK, PIS1, VTC2, VTC4, and PDF2.1, implying that BnMIOX genes play key roles in improving the resistance of B. napus. This study provides an important basis for further investigation of the function of BnMIOX genes.



Key wordsBrassica napus L.      myo-inositol oxygenase (MIOX)      gene family      abiotic stress      gene expression     
Received: 28 September 2022      Published: 29 August 2023
CLC:  S565.4  
Corresponding Authors: Ling XU     E-mail: 2864928337@qq.com;lxu@zstu.edu.cn
Cite this article:

Shubing CHEN,XU Zishu,Qian HUANG,Hui ZHANG,Kangni ZHANG,Yi DUAN,Yue’e SUN,Weijun ZHOU,Ling XU. Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 484-496.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.09.281     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/484


甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析

肌醇加氧酶(myo-inositol oxygenase, MIOX)催化肌醇转化为葡糖醛酸,在响应生物和非生物胁迫中发挥着重要作用。本研究对甘蓝型油菜MIOX家族基因(BnMIOX)进行了全基因组鉴定和表达模式分析。结果表明,BnMIOX家族包括12个成员,分布在9条染色体上;根据MIOX基因结构域特点,可以将甘蓝型油菜与拟南芥、白菜和甘蓝构建的系统进化树分为Ⅰ、Ⅱ、Ⅲ3个亚家族;且共线性分析中没有找到串联重复基因对,全部为大片段复制基因,表明片段重复和全基因组重复是甘蓝型油菜MIOX基因家族扩增的主要驱动力。转录组数据分析表明,BnMIOX基因在不同组织、不同生长发育过程中的时空表达模式不同。不同胁迫下的表达谱分析表明,BnMIOX1基因在干旱、盐胁迫下被显著诱导表达,且BnMIOX1BnMIOX2BnMIOX9基因对干旱、盐、脱落酸(abscisic acid, ABA)和冷胁迫响应较为明显。蛋白质互作网络分析结果进一步表明,BnMIOX与GLCAK、PIS1、VTC2、VTC4、PDF2.1等蛋白存在互作,推测BnMIOX基因在提高甘蓝型油菜抗性过程中发挥关键作用。本研究为进一步探讨BnMIOX基因的功能提供了依据。


关键词: 甘蓝型油菜,  肌醇加氧酶,  基因家族,  非生物胁迫,  基因表达 

基因

Gene

基因编号

Gene ID

染色体定位

Location on

chromosome

氨基酸数目

Number of

amino acids

分子量

Molecular weight/kDa

等电点

Isoelectric point (pI)

亚细胞定位

Subcellular location

BnMIOX1BnaA01g23900DA0156163.038.02细胞核
BnMIOX2BnaA02g08540DA0231636.734.93细胞质
BnMIOX3BnaA03g47910DA0331036.335.03细胞质
BnMIOX4BnaA07g00980DA0731236.545.14细胞质
BnMIOX5BnaA09g10050DA0931736.975.05细胞质
BnMIOX6BnaC02g12100DC0231636.994.95细胞质
BnMIOX7BnaC07g01430DC0731236.555.14细胞质
BnMIOX8BnaC07g40160DC0731036.234.94细胞质
BnMIOX9BnaC08g16200DC0816819.879.06质膜
BnMIOX10BnaC09g10140DC0931737.025.15细胞质
BnMIOX11BnaC05g49660DC05_random30636.084.98细胞质
BnMIOX12BnaAnng22250DAnn_random30635.994.89细胞质
Table 1 Sequence characteristics of the BnMIOX family
Fig. 1 Phylogenetic tree of MIOX protein sequences in B. napus, A. thaliana, B. rapa and B. oleracearepresents A. thaliana; represents B. oleracea; represents B. rapa; represents B. napus.
Fig. 3 Predicted cis-acting elements in the BnMIOX promoters

名称

Name

序列

Sequence

数量

Number

功能

Function

ABREACGTG31脱落酸响应元件
LTRCCGAAA6低温响应元件
MBSCAACTG4干旱响应元件
P-boxCCTTTTG4赤霉素响应元件
TCA-elementCCATCTTTTT9水杨酸响应元件
TC-richGTTTTCTTAC3

参与防御和应激

反应元件

ATCT-motifAATCTAATCC2光响应元件
G-boxCACGTT21光响应元件
CGTCA-motifCGTCA23

茉莉酸甲酯响应

元件

TGACG-motifTGACG23

茉莉酸甲酯响应

元件

Table 2 Information for predicted partial cis-acting elements
Fig. 2 Gene structures and conserved motifs ofBnMIOX familyA. Gene structures of BnMIOX family; B. Conserved motifs of BnMIOX family.
Fig. 4 Distribution of the BnMIOX genes on chromosomesEach chromosome is divided by 0.1 Mb, and the color in this region represents the gene density (blue: low; white: medium; red: high).
Fig. 5 Collinearity analysis of the BnMIOX familyGray regions indicate all collinearity regions in the B. napus genome, and yellow lines indicate replication events of the BnMIOX genes.
Fig. 6 Collinearity analysis of the MIOX genes among different plantsGray lines indicate the collinearity of B. napus with all genes of other species, and red lines indicate MIOX gene pairs with collinear relationships.
Fig. 7 Heatmap of BnMIOX gene expression in different tissues and organsFPKM: Fragments per kilobase of exon model per million mapped reads.
Fig. 8 Heatmap of BnMIOX gene expression under different stresses

BnMIOX蛋白

BnMIOX protein

BnMIOX2BnMIOX3BnMIOX4BnMIOX5BnMIOX6BnMIOX7BnMIOX8BnMIOX11
BnMIOX20.0000.5740.7360.7400.0000.7480.5740.992
BnMIOX30.0000.6130.6050.5740.6210.0000.797
BnMIOX40.0000.4740.7360.1540.6130.919
BnMIOX50.0000.7400.4850.6050.928
BnMIOX60.0000.7480.5740.992
BnMIOX70.0000.6210.917
BnMIOX80.0000.797
BnMIOX110.000
Table 3 Root mean square deviation (RMSD) between predicted structures of BnMIOX proteins
Fig. 9 Three-dimensional structures of BnMIOX proteinsThe structural model is the crystal structure of mouse myo-inositol oxygenase in complex with substrate.
Fig. 10 Prediction of interaction networks between BnMIOX protein and the other proteinThe circles represent all kinds of proteins, and the connecting line represents protein-protein interaction.
[4]   杨楠.杨树肌醇代谢关键酶基因的表达及功能研究[D].山东,烟台:鲁东大学,2017.
YANG N. Expression and function of inositol metabolism key enzymes gene in poplar[D]. Yantai, Shandong: Ludong University, 2017. (in Chinese with English abstract)
[5]   LOEWUS F A, MURTHY P P N. myo-inositol metabolism in plants[J]. Plant Science, 2000, 150: 1-19.
[6]   YE W X, REN W B, KONG L Q, et al. Transcriptomic proling analysis of Arabidopsis thaliana treated with exogenous myo-inositol[J]. PLoS ONE, 2016, 11(9): e161949. DOI: 10.1371/journal.pone.0161949
doi: 10.1371/journal.pone.0161949
[7]   ARNER R J, PRABHU K S, THOMPSON J T, et al. myo-inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol[J]. Biochemical Journal, 2001, 360: 313-320.
[8]   LU Y, LIU C, MIAO X, et al. Increased expression of myo-inositol oxygenase is involved in the tubulointerstitial injury of diabetic nephropathy[J]. Experimental and Clinical Endo-crinology & Diabetes, 2009, 117(6): 257-265. DOI: 10.1055/s-2008-1081212
doi: 10.1055/s-2008-1081212
[9]   YANG B M, HODGKINSON A, MILLWARD B A, et al. Polymorphisms of myo-inositol oxygenase gene are associated with type 1 diabetes mellitus[J]. Journal of Diabetes and its Complications, 2010, 24(6): 404-408. DOI: 10.1016/j.jdiacomp.2009.09.005
doi: 10.1016/j.jdiacomp.2009.09.005
[10]   XIE P, SUN L, OATES P J, et al. Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis[J]. American Journal of Physiology-Renal Physiology, 2010, 298(6): F1393-F1404. DOI: 10.1152/ajprenal.00137.2010
doi: 10.1152/ajprenal.00137.2010
[11]   ARNER R J, PRABHU K S, KRISHNAN V, et al. Expression of myo-inositol oxygenase in tissues susceptible todiabetic complications[J]. Biochemical and Biophysical Research Communications, 2006, 339: 816-820. DOI: 10.1016/j.bbrc.2005.11.090
doi: 10.1016/j.bbrc.2005.11.090
[12]   傅小娟,陈雪梅,周钦,等. Miox基因在爪蟾胚胎发育中的时间和空间表达谱分析[J].第二军医大学学报,2014,35(8):832-836. DOI:10.3724/SP.J.1008.2014.00832
FU X J, CHEN X M, ZHOU Q, et al. Analysis of temporal and spatial expression patterns of Miox genes during development of Xenopus laevis embryos[J]. Academic Journal of Second Military Medical University, 2014, 35(8): 832-836. (in Chinese with English abstract)
doi: 10.3724/SP.J.1008.2014.00832
[13]   DUAN J Z, ZHANG M H, ZHANG H L, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Plant Science, 2012, 196: 143-151. DOI: 10.1016/j.plantsci.2012.08.003
doi: 10.1016/j.plantsci.2012.08.003
[14]   CHEN C, SUN X L, DUANMU H Z, et al. Ectopic expression of a Glycine soja myo-inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress[J]. PLoS ONE, 2015, 10(6): e129998. DOI: 10.1371/journal.pone.0129998
doi: 10.1371/journal.pone.0129998
[1]   王博.冬、春和半冬性甘蓝型油菜的遗传特征和基因组分化[D].湖北,武汉:华中农业大学,2019.
WANG B. Genetic characteristics and genomic divergence among winter, spring and semi-winter oilseed rape[D]. Wuhan, Hubei: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
[15]   ENDRES S, TENHAKEN R. myo-inositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid[J]. Plant Physiology, 2009, 149(2): 1042-1049. DOI: 10.1104/pp.108.130948
doi: 10.1104/pp.108.130948
[16]   GIBON Y, USADEL B, BLAESING O E, et al. Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes[J]. Genome Biology, 2006, 7(8): R76. DOI: 10.1186/gb-2006-7-8-r76
doi: 10.1186/gb-2006-7-8-r76
[17]   OSUNA D, USADEL B, MORCUENDE R, et al. Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings[J]. The Plant Journal, 2007, 49: 463-491. DOI: 10.1111/j.1365-313x.2006.02979.x
doi: 10.1111/j.1365-313x.2006.02979.x
[18]   MUNIR S, MUMTAZ M A, AHIAKPA J K, et al. Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation[J]. BMC Genomics, 2020, 21: 284. DOI: 10.1186/s12864-020-6708-8
doi: 10.1186/s12864-020-6708-8
[19]   YANG J, YANG J L, ZHAO L L, et al. Ectopic expression of a Malus hupehensis Rehd. myo-inositol oxygenase gene (MhMIOX2) enhances tolerance to salt stress[J]. Scientia Horticulturae, 2021, 281: 109898. DOI: 10.1016/j.scienta.2021.109898
doi: 10.1016/j.scienta.2021.109898
[20]   SUN F M, FAN G Y, HU Q, et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype[J]. The Plant Journal, 2017, 92(3): 452-468. DOI: 10.1111/tpj.13669
doi: 10.1111/tpj.13669
[21]   XUE T T, WANG D, ZHANG S Z, et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis [J]. BMC Genomics, 2008, 9: 550. DOI: 10.1186/1471-2164-9-550
doi: 10.1186/1471-2164-9-550
[22]   ALI G M, KOMATSU S. Proteomic analysis of rice leaf sheath during drought stress[J]. Journal of Proteome Research, 2006, 5(2): 396-403. DOI: 10.1021/pr050291g
doi: 10.1021/pr050291g
[23]   SARDA X, TOUSCH D, FERRARE K, et al. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal, 1997, 12(5): 1103-1111.
[24]   CHUNG B Y W, SIMONS C, FIRTH A E, et al. Effect of 5 ´ UTR introns on gene expression in Arabidopsis thaliana [J]. BMC Genomics, 2006, 7: 120. DOI: 10.1186/1471-2164-7-120
doi: 10.1186/1471-2164-7-120
[25]   JEFFARES D C, PENKETT C J, BÄHLER J. Rapidly regulated genes are intron poor[J]. Trends in Genetics, 2008, 24(8): 375-378. DOI: 10.1016/j.tig.2008.05.006
doi: 10.1016/j.tig.2008.05.006
[26]   吴楠,杨君,张艳,等.过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J].中国农业科技导报,2022,24(6):36-46. DOI:10.13304/j.nykjdb.2021.0806
WU N, ZHANG J, ZHANG Y, et al. Overexpression of a cotton glucuronokinase gene GbGlcAK promotes cell elongation in Arabidopsis thaliana [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2021.0806
[27]   彭丽娟,彭正松,杨在君,等.小麦三雌蕊基因Pis1的多效性研究初报[J].西华师范大学学报(自然科学版),2011,32(1):12-15. DOI:10.16246/j.issn.1673-5072.2011.01.002
PENG L J, PENG Z S, YANG Z J, et al. Preliminary study on heritable pleiotropy of three pistils gene Pis1 in wheat[J]. Journal of China West Normal University (Natural Sciences), 2011, 32(1): 12-15. (in Chinese with English abstract)
doi: 10.16246/j.issn.1673-5072.2011.01.002
[28]   董祥雨,陈丽华,涂泽行,等.棉花GhVTC2基因促进烟草BY2悬浮细胞和拟南芥主根伸长[J].生物学杂志,2022,39(5):32-37. DOI:10.3969/j.issn.2095-1736.2022.05.032
DONG X Y, CHEN L H, TU Z X, et al. GhVTC2 gene promotes elongation of tobacco BY2 suspension cells and Arabidopsis main roots[J]. Journal of Biology, 2022, 39(5): 32-37. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1736.2022.05.032
[29]   BOYCE K J, KRETSCHMER M, KRONSTAD J W. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis [J]. Eukaryotic Cell, 2006, 5(8): 1399-1409. DOI: 10.1128/EC.00131-06
doi: 10.1128/EC.00131-06
[30]   张曼,羊杏平,王薇薇,等.西瓜防御素基因ClPDF2.1的克隆及表达分析[J].西北植物学报,2013,33(5):872-877. DOI:10.3969/j.issn.1000-4025.2013.05.003
ZHANG M, YANG X P, WANG W W, et al. Cloning and expression analysis of plant defensin-like gene (ClPDF2.1) from watermelon[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(5): 872-877. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4025.2013.05.003
[31]   CRAMER G R, URANO K, DELROT S, et al. Effects of abiotic stress on plants: a systems biology perspective[J]. BMC Plant Biology, 2011, 11: 163. DOI: 10.1186/1471-2229-11-163
doi: 10.1186/1471-2229-11-163
[32]   YANG Y J, MA C, XU Y J, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. The Plant Cell, 2014, 26(5): 2038-2354. DOI: 10.1105/tpc.114.124867
doi: 10.1105/tpc.114.124867
[33]   LIU S M, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260. DOI: 10.1038/nature11651
doi: 10.1038/nature11651
[34]   MITCHUM M G. Soy bean resistance to the soybean cyst nematode Heterodera glycines: an update[J]. Phytopathology, 2016, 106(12): 1444-1450. DOI: 10.1094/PHYTO-06-16-0227-RVW
doi: 10.1094/PHYTO-06-16-0227-RVW
[35]   王学敏,杨若巍,王超,等.大豆肌醇加氧酶基因响应线虫胁迫的表达分析[J].中国油料作物学报,2017,39(6):778-784. DOI:10.7505 /j.issn.1007-9084.2017.06.008
WANG X M, YANG R W, WANG C, et al. Expression analysis of GmMIOX gene response to SCN stress[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6): 778-784. (in Chinese with English abstract)
doi: 10.7505 /j.issn.1007-9084.2017.06.008
[2]   CHALHOUB B, DENOEUD F, LIU S Y, et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199): 950-953. DOI: 10.1126/science.1253435
doi: 10.1126/science.1253435
[3]   张梦,谢益民,杨海涛,等.肌醇在植物体内的代谢概述:肌醇作为细胞壁木聚糖和果胶前驱物的代谢途径[J].林产化学与工业,2013,33(5):106-114. DOI:10.3969/j.issn.0253-2417.2013.05.021
ZHANG M, XIE Y M, YANG H T, et al. Myo-inositol metamolism as the precursor of xylan and pectin in plants[J]. Chemistry and Industry of Forest Products, 2013, 33(5): 106-114. (in Chinese with English abstract)
doi: 10.3969/j.issn.0253-2417.2013.05.021
[1] Licong CAI,Mingjia TANG,Jin XU,Zhenyu QI,Feijun FAN,Yanhong ZHOU. Identification and analysis of heat shock transcription factor gene in Zizania latifolia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 269-279.
[2] Xueqi Lü, Ying XU, Yingying HUANG, Mingqi LIU, Xiaoyan WENG. OsbHLH59 involved in rice resistance to Nilaparvata lugens(St?l) by regulating the expression level of xylanase inhibitor protein OsXIP[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 453-464.
[3] Le ZHU,Xinze ZHAO,Lixi JIANG. Genome-wide identification and analysis of potassium ion transporter HAK/KUP/KT family in rapeseed (Brassica napus L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 303-313.
[4] Youxuan WANG,Mengyu WANG,Yubo LI,Han TAO,Chuchu XIA,Kaimei HUANG,Qiaomei WANG. Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 314-324.
[5] Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.
[6] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.
[7] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.
[8] MEI Lei, ZHU Ye, XIAO Qinzhi, CHEN Jinhong, ZHU Shuijin. Advances in study on phytochelatin synthase in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 530-538.
[9] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[10] LONG Shiyun, JIANG Dongmei, CHEN Ziyu, GUAN Cheng, YI Zhixin, KANG Bo. Effect of exogenous spermidine on expression profile of reproductive hormone receptors in mouse ovaries.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 247-252.
[11] YUE Wucheng, CHEN Jiao, CI Yuanji, HUANG Shu, WANG Jun, WANG Chenghui. Effects of limb regeneration on molt, growth and related gene expression in Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 502-508.
[12] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.
[13] Wang Yan, Pan Changtian, Wang Jie, Qin Li, Zou Tao, Lu Gang. Effects of gibberellin on tomato stigma exsertion and hormonerelated gene expression under moderate heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 449-457.
[14] Jiang Ming, Chen Beibei, Guan Ming, Li Jinzhi, Huang Xiaomei, Gu Yunji . Cloning and expression analysis of a transcription factor gene BoWRKY2 from broccoli.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 153-159.
[15] . Isolation of mitogenactivated protein kinase SlMAPK12 gene and characterization of its expression pattern in Solanum lycopersicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 551-558.