Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (3): 314-324    DOI: 10.3785/j.issn.1008-9209.2020.10.221
Horticulture     
Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale
Youxuan WANG1(),Mengyu WANG1,Yubo LI1,Han TAO1,Chuchu XIA1,Kaimei HUANG2(),Qiaomei WANG1()
1.Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University/Ministry of Agriculture and Rural Affairs Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Hangzhou 310058, China
2.Hangzhou Agricultural Technology Extension Center, Hangzhou 310017, China
Download: HTML   HTML (   PDF(4968KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To better understand the indole-3-acetic acid (IAA) response pathway and explore thespecific functions of Aux/IAA gene family in the growth of Chinese kale and in response to salt stress, forty-one Aux/IAA genes were collected and analyzed by bioinformatics methods from Chinese kale genome. Phylogenetic analysis showed that the Aux/IAA genes of Chinese kale were distributed on nine chromosomes and the most genes were distributed on chromosome C01 and C05 including six members, respectively. The number of the amino acid residues of proteins encoded by Aux/IAA genes ranged from 128 to 427, and most of them were hydrophilic proteins, and only two were hydrophobic proteins. The subcellular localization analysis indicated that the Aux/IAA family members were mostly located in cytoplasm, nucleus and chloroplast. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that several Aux/IAA genes of Chinese kale responded to IAA, abscisic acid (ABA) and brassinosteroids (BR) treatments, which suggested that the Aux/IAA gene family was probably involved in plant hormone signal transduction process. Additionally, under salt stress treatment, the expression of BoIAA19-1 and BoIAA2-1 genes in Chinese kale were significantly up-regulated during the early treatment stage, indicating that Aux/IAA genes may also play roles in response to diverse environmental stresses. The results of this research lay theoretical foundations for further exploring the function of the Aux/IAA gene family in the growth and resistance balance of Chinese kale.



Key wordsChinese kale      Aux/IAA gene family      bioinformatics analysis      expression analysis     
Received: 22 October 2020      Published: 25 June 2021
CLC:  S 635.9  
Corresponding Authors: Kaimei HUANG,Qiaomei WANG     E-mail: 3170100567@zju.edu.cn;haungkm@163.com;qmwang@zju.edu.cn
Cite this article:

Youxuan WANG,Mengyu WANG,Yubo LI,Han TAO,Chuchu XIA,Kaimei HUANG,Qiaomei WANG. Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 314-324.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.221     OR     http://www.zjujournals.com/agr/Y2021/V47/I3/314


芥蓝Aux/IAA家族基因生物信息学与表达分析

为更好地理解芥蓝生长素(indole-3-acetic acid, IAA)的响应途径及揭示Aux/IAA基因家族在芥蓝生长和抗盐胁迫中的功能,本研究利用生物信息学的方法从芥蓝基因组中鉴定到了41个Aux/IAA家族基因。系统进化分析结果表明,芥蓝Aux/IAA基因家族成员分布于9条染色体上,在染色体C01和C05上分布的基因最多,各有6个;该家族基因编码的蛋白质的氨基酸残基数在128~427之间,大多数为亲水性蛋白,仅有2个疏水性蛋白。亚细胞定位预测结果表明,Aux/IAA家族成员多位于细胞质、细胞核和叶绿体上。实时荧光定量聚合酶链式反应 (real-time quantitative polymerase chain reaction, qRT-PCR)结果表明,芥蓝Aux/IAA基因家族部分成员对生长素(IAA)、脱落酸(abscisic acid, ABA)、油菜素内酯(brassinosteroids, BR)处理存在不同程度的响应,说明芥蓝Aux/IAA基因家族很可能参与植物激素信号的传导。此外,经过盐胁迫处理后,芥蓝BoIAA19-1BoIAA2-1的表达量在处理前期均显著上调,预示Aux/IAA基因在芥蓝响应逆境的过程中也可能发挥作用。本研究结果为进一步研究Aux/IAA基因家族在芥蓝生长和抗性平衡中的功能奠定了理论基础。


关键词: 芥蓝,  Aux/IAA基因家族,  生物信息学分析,  表达分析 

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

RT-BoActin7-FGATCGAGCACGGTATTGTAAGC
RT-BoActin7-RCCCACTAGCGTAGAGAGAAAG
RT-BoIAA2-1-FAAGCAACAAGCGTCAACACC
RT-BoIAA2-1-RAGGAGCTCCGTCCATACTCA
RT-BoIAA3-1-FACCTAAAGGCAACCGAGCTG
RT-BoIAA3-1-RATCTGAGCCTTTCGTGGAGG
RT-BoIAA3-2-FCGTCGGCTTAGCTTGGTTCT
RT-BoIAA3-2-RGGCGATTCCAGATCATCCGT
RT-BoIAA4-FGCAACAGAGCTGAGACTAGGA
RT-BoIAA4-RGCCATCCAACAATCTGAGCC
RT-BoIAA5-FATGTGAACCGGCGACAAAGA
RT-BoIAA5-RACATCACCAGCAAGCATCCA
RT-BoIAA9-1-FAACAACAGCTCTAGCCCACC
RT-BoIAA9-1-RGCAGAAAGCTCCCCGTAGTT
RT-BoIAA9-2-FTGTGGCGAGTTCATCACCAA
RT-BoIAA9-2-RGCTTAGCAGGAGAACGGGAA
RT-BoIAA19-1-FTTGGACGACAAAAGTGGGGT
RT-BoIAA19-1-RCATCTCCAGCGAGCATCCAA
RT-BoIAA19-2-FGTGAACAATGTGAGAGCGGC
RT-BoIAA19-2-RCCTAACCCCACTTTCGTCGT
Table 1 Primers used for qRT-PCR

序列编码

Sequence ID

基因

Gene

氨基酸数目

Amino acid

number

分子质量

Molecular mass/ Da

等电点

pI

不稳定系数

Instability index

脂肪指数

Aliphatic index

平均亲水系数

Average hydrophilic

index

>Bol038615BoIAA2-119121 622.695.8152.3360.63-0.713
>Bol028707BoIAA2-219822 194.548.7041.0171.41-0.554
>Bol040875BoIAA3-118621 022.097.4842.3765.91-0.560
>Bol011602BoIAA3-217818 945.904.3818.17123.310.778
>Bol009531BoIAA4-119121 622.695.8152.3360.63-0.713
>Bol009871BoIAA5-112814 445.817.6357.1286.72-0.266
>Bol039162BoIAA6-120322 637.077.6234.7589.660.299
>Bol031746BoIAA8-127129 842.948.5738.3373.73-0.500
>Bol004361BoIAA9-132935 540.518.3640.2176.28-0.385
>Bol008065BoIAA9-229331 658.866.6337.9071.23-0.400
>Bol040868BoIAA10-177783 370.169.3440.6087.04-0.087
>Bol019649BoIAA11-124526 415.585.4743.9272.04-0.473
>Bol033544BoIAA11-238041 675.446.1838.1674.34-0.339
>Bol040903BoIAA12-123025 408.799.5739.7864.43-0.770
>Bol018343BoIAA12-242746 214.799.4535.6781.80-0.277
>Bol027258BoIAA13-123625 453.839.2031.2971.10-0.555
>Bol037015BoIAA13-224726 849.499.3533.2670.65-0.582
>Bol001436BoIAA15-117720 113.247.6249.1581.47-0.264
>Bol002707BoIAA16-127730 267.849.3028.0776.35-0.374
>Bol003120BoIAA16-223125 139.778.6431.5769.26-0.400
>Bol019495BoIAA18-125328 219.759.6145.1062.37-0.911
>Bol002014BoIAA18-222425 006.059.7350.5059.73-0.745
>Bol011172BoIAA19-117719 448.225.9547.7670.40-0.441
>Bol034711BoIAA19-219721 826.945.2343.1772.59-0.393
>Bol021812BoIAA20-117419 325.414.7748.0365.52-0.438
>Bol036925BoIAA26-126830 106.109.0448.6565.49-0.894
>Bol034783BoIAA26-223626 472.576.6142.5565.21-0.967
>Bol019603BoIAA27-127530 134.078.7349.0263.13-0.599
>Bol021102BoIAA27-223025 273.688.4147.5765.70-0.511
>Bol022320BoIAA28-118020 905.839.1252.7380.00-0.653
>Bol032479BoIAA28-217520 024.798.9944.0380.63-0.679
>Bol017925BoIAA29-119122 181.015.8844.7865.81-0.705
>Bol033768BoIAA29-219122 006.655.2249.7864.76-0.646
>Bol045689BoIAA30-117720 123.184.7370.6962.77-0.634
>Bol014397BoIAA30-217219 376.504.9068.6270.23-0.477
>Bol038661BoIAA31-112814 329.099.3334.8873.05-0.586
>Bol022926BoIAA31-215718 134.688.3646.1575.03-0.527
>Bol007955BoIAA32-118821 434.097.7829.4073.56-0.634
>Bol012219BoIAA33-117419 128.984.5737.6672.24-0.502
>Bol014224BoIAA33-217519 575.916.9743.8875.71-0.603
>Bol038104BoIAA34-116419 037.516.6025.4168.78-0.668
Table 2 Information and physicochemical properties of Aux/IAA family in Chinese kale
Fig. 1 Chromosome mapping of the Aux/IAA gene family in Chinese kale
Fig. 2 Phylogenetic tree analysis of Aux/IAA family protein in Chinese kale
Fig. 3 Analysis of protein conserved sequence motif ofAux/IAA family in Chinese kale
Fig. 4 Structures of Aux/IAA proteins’ conserved domain Ⅰ, Ⅱ, Ⅲ and Ⅳ
Fig. 5 Expressions of some Aux/IAA gene family members under different hormone treatmentsCK: 0 h, clear water treatment.
Fig. 6 Expressions of some Aux/IAA gene family members under salt stress treatmentsCK: 0 h, clear water treatment. Single asterisk (*) indicates significant differences at the 0.05 probability level as compared with the control group (CK).
[1]   FARCOT E, LAVEDRINE C, VERNOUX T. A modular analysis of the auxin signalling network. PLoS ONE, 2015,10(6):e0122231. DOI:10.1371/journal.pone.0122231
doi: 10.1371/journal.pone.0122231
[2]   李小平,曾庆发,张根生,等.大豆生长素响应因子基因GmARF17对胚轴生长发育的调控作用.核农学报,2015,29(9):1668-1676. DOI:10.11869/j.issn.100-8551.2015.09.1668
LI X P, ZENG Q F, ZHANG G S, et al. The regulation effect of the soybean auxin response factor gene GmARF17 on the growth and development of hypocotyls. Journal of Nuclear Agricultural Sciences, 2015,29(9):1668-1676. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2015.09.1668
[3]   YAMAMOTO M, YAMAMOTO K T. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant and Cell Physiology, 1998,39(6):660-664.
[4]   鄂志国,王磊.水稻中生长素作用的分子机理研究进展.核农学报,2011,25(4):730-735.
E Z G, WANG L. Advances on molecular mechanism of auxin in rice. Journal of Nuclear Agricultural Sciences, 2011,25(4):730-735. (in Chinese with English abstract)
[5]   SZEMENYEI H, HANNON M, LONG J A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 2008,319(5868):1384-1386. DOI:10.1126/science.1151461
doi: 10.1126/science.1151461
[6]   WEIJERS D, WAGNER D. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 2016,67:539-574. DOI:10.1146/annurev-arplant-043015-112122
doi: 10.1146/annurev-arplant-043015-112122
[7]   SALEHIN M, LI B H, TANG M, et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications, 2019,10:4021. DOI:10.1038/s41467-019-12002-1
doi: 10.1038/s41467-019-12002-1
[8]   WANG J, YAN D W, YUAN T T, et al. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level. Plant Molecular Biology, 2013,82(1/2):71-83. DOI:10.1007/s11103-013-0039-y
doi: 10.1007/s11103-013-0039-y
[9]   HU J H, ISRAELI A, ORI N, et al. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell, 2018,30(8):1710-1728. DOI:10.1105/tpc.18.00363
doi: 10.1105/tpc.18.00363
[10]   GUILLOTIN B, ETEMADI M, AUDRAN C, et al. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom). New Phytologist, 2017,213:1124-1132. DOI:10.1111/nph.14246
doi: 10.1111/nph.14246
[11]   BEDNAREK P, PI?LEWSKA-BEDNAREK M, SVATO? A, et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 2009,323(5910):101-106. DOI:10.1126/science.1163732
doi: 10.1126/science.1163732
[12]   曾文芳,王小贝,潘磊,等.桃Aux/IAA家族基因鉴定及在果实成熟过程中的表达分析.园艺学报,2017,44(2):233-244. DOI:10.16420/j.issn.0513-353x.2016-0388
ZENG W F, WANG X B, PAN L, et al. Identification and expression profiling of Aux/IAA family gene during peach fruit ripening. Acta Horticulturae Sinica, 2017,44(2):233-244. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2016-0388
[13]   田爱梅,于晖.芥蓝BaCSLD的克隆、亚细胞定位及表达分析.核农学报,2020,34(5):948-953. DOI:10.11869/j.issn.100-8551.2020.05.0948
TIAN A M, YU H. Cloning, subcelluar localization and expression analysis of BaCSLD from Brassica alboglabra. Journal of Nuclear Agricultural Sciences, 2020,34(5):948-953. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2020.05.0948
[14]   卢世雄,王萍,何红红,等.葡萄Trihelix转录因子家族生物信息及其基因表达分析.园艺学报,2019,46(7):1257-1269. DOI:10.5784/27-2-100-10
LU S X, WANG P, HE H H, et al. Bioinformatics identification and expression analysis of grape Trihelix transcription factor family. Acta Horticulturae Sinica, 2019,46(7):1257-1269. (in Chinese with English abstract)
doi: 10.5784/27-2-100-10
[15]   LEYSER O. Auxin signaling. Plant Physiology, 2018,176(1):465-479. DOI:10.1104/pp.17.00765
doi: 10.1104/pp.17.00765
[16]   GUILFOYLE T J, HAGEN G. Getting a grasp on domain Ⅲ/Ⅳ responsible for auxin response factor-IAA protein interactions. Plant Science, 2012,190:82-88. DOI:10.1016/j.plantsci.2012.04.003
doi: 10.1016/j.plantsci.2012.04.003
[17]   WALKER J C, KEY J L. Isolation of cloned cDNAS to auxin-responsive poly(A)+RNAs of elongating soybean hypocotyl. PNAS, 1982,79:7185-7189.
[18]   OVERVOORDE P J, OKUSHIMA Y, ALONSO J M, et al. Functional genomic analysis of the Auxin/Indole-3-AceticAcid gene family members in Arabidopsis thaliana. The Plant Cell, 2005,17(12):3282-3300. DOI:10.1105/tpc.105.036723
doi: 10.1105/tpc.105.036723
[19]   WANG Y J, DENG D X, BIAN Y L, et al. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Molecular Biology Reports, 2010,37(8):3991-4001. DOI:10.1007/s11033-010-0058-6
doi: 10.1007/s11033-010-0058-6
[20]   QIAO L Y, ZHANG X J, HAN X, et al. A genome-wide analysis of the Auxin/indole-3-aceticacid gene family in hexaploid bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2015,6:770. DOI:10.3389/fpls.2015.00770
doi: 10.3389/fpls.2015.00770
[21]   SINGH V K, JAIN M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Frontiers in Plant Science, 2015,6:918. DOI:10.3389/fpls.2015.00918
doi: 10.3389/fpls.2015.00918
[22]   WU J, PENG Z, LIU S Y, et al. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Molecular Genetics and Genomics, 2012,287(4):295-311. DOI:10.1007/s00438-012-0675-y
doi: 10.1007/s00438-012-0675-y
[23]   方智振,姜翠翠,周丹蓉,等.三月李及其红肉突变体Aux/IAA家族基因鉴定及分析.核农学报,2020,34(2):247-255. DOI:10.11869/j.issn.100-8551.2020.02.0247
FANG Z Z, JIANG C C, ZHOU D R, et al. Identification and analysis of Aux/IAA family genes of Sanyueli (Prunus salicina Lindl.) and the red-fleshed mutant. Journal of Nuclear Agricultural Sciences, 2020,34(2):247-255. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2020.02.0247
[24]   LI H T, WANG B, ZHANG Q H, et al. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC Plant Biology, 2017,17:204. DOI:10.1186/s12870-017-1165-5
doi: 10.1186/s12870-017-1165-5
[25]   HAGEN G, GUILFOYLE T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002,49(3/4):373-385.
[26]   REED J W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science, 2001,6(9):420-425. DOI:10.1016/S1360-1385(01)02042-8
doi: 10.1016/S1360-1385(01)02042-8
[27]   MORGAN K E, ZAREMBINSKI T I, THEOLOGIS A. Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins. Federation of European Biochemical Societies Letters, 1999,454:283-287. DOI:10.1016/s0014-5793(99)00819-4
doi: 10.1016/s0014-5793(99)00819-4
[28]   KORASICK D A, CHATTERJEE S, TONELLI M, et al. Defining a two-pronged structural model for PB1 (Phox/Bem1p) domain interaction in plant auxin responses. Journal of Biological Chemistry, 2015,290(20):12868-12878. DOI:10.1074/jbc.M115.648253
doi: 10
[29]   KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005,435(7041):446-451. DOI:10.1038/nature03542
doi: 10.1038/nature03542
[30]   SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. The Plant Cell, 2015,27(1):9-19. DOI:10.1105/tpc.114.133744
doi: 10.1105/tpc.114.133744
[31]   CAO M, CHEN R, LI P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019,568(7751):240-243. DOI:10.1038/s41586-019-1069-7
doi: 10.1038/s41586-019-1069-7
[32]   DREHER K A, BROWN J, SAW R E, et al. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. The Plant Cell, 2006,18(3):699-714. DOI:10.1105/tpc.105.039172
doi: 10.1105/tpc.105.039172
[33]   王国平,周东洁,牛永志,等.普通烟草Aux/IAA转录因子家族全基因组鉴定分析.中国烟草学报,2019,25(6):80-89. DOI:10.16472/j.chinatobacco.2019.120
WANG G P, ZHOU D J, NIU Y Z, et al. Genome-wide identification and analysis of Aux/IAA gene family in Nicotiana tobacum. Acta Tabacaria Sinica, 2019,25(6):80-89. (in Chinese with English abstract)
doi: 10.16472/j.chinatobacco.2019.120
[34]   蒲全明,施松梅,张林成,等.结球甘蓝AUX/IAA家族基因BoIAA2BoIAA19的克隆与表达分析.中国农业科技导报,2017,19(9):24-33. DOI:10.13304/j.nykjdb.2016.684
PU Q M, SHI S M, ZHANG L C, et al. Cloning and expression analysis of BoIAA2 and BoIAA19 genes of Aux/IAA family in cabbage. Journal of Agricultural Science and Technology, 2017,19(9):24-33. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2016.684
[1] Faxiang WAN,Lianzhen WANG,Jun GAO. Bioinformatics of 1-aminocyclopropane-1-carboxylic acid synthase gene from eggplant and its expression analysis in response to adversity stresses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 325-334.
[2] Lingjuan XUAN,Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN. Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 407-416.
[3] MIAO Huiying, CHEN Hao, CHANG Jiaqi, WANG Mengyu, ZHANG Fen, SUN Bo, WANG Qiaomei. Effects of glucose and methyl jasmonate treatments on glucosinolate accumulation and antioxidant attributes in Chinese kale sprouts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 327-334.
[4] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[5] XIA Xue, GU Jinhua, LIU Dan, WU Yimei, TIAN Yuxiao, CHEN Qing, ZHANG Fen, TANG Haoru, SUN Bo. Optimization of chromosome preparation and karyotype analysis of yellow-flower Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 527-.
[6] KE Ye, ZENG Song-rong, ZHENG Qiu-hua. Bioinformatics analysis of structure and function of serine protease gene from Mucor racemosus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 370-376.
[7] CHEN Beibei, JIANG Ming, MIAO Lixiang, LI Wenping. Cloning and expression analysis of a transcription factor gene BoWRKY3 from Brassica oleracea var.  italica.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 243-249.
[8] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[9] MA Yun,WANG Yun-yun, ZHANG Xiao-ting, LI Fen, WANG Qi-zhao,WANG Xin-zhuang. Bioinformatics analysis of duck PPARα gene structure and function[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 371-379.
[10] JIANG Ming,CHEN Xiao-shang,LI Jin-zhi. Cloning, expression and sequence analysis of anthocyanidin synthase gene BcANS in Brassica campestris var. purpurea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 393-398.