Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 453-464    DOI: 10.3785/j.issn.1008-9209.2021.07.072
Plant protection     
OsbHLH59 involved in rice resistance to Nilaparvata lugens(St?l) by regulating the expression level of xylanase inhibitor protein OsXIP
Xueqi Lü1(),Ying XU1,Yingying HUANG1,Mingqi LIU2,Xiaoyan WENG1()
1.Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
2.College of Life Sciences, China Jiliang University, Hangzhou 310018, China
Download: HTML   HTML (   PDF(2583KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Xylanase inhibitor protein (XIP) is considered to participate in plant defense. OsXIP was found to be a stress-responsive gene of Nilaparvata lugens (St?l) in the previous study. The transcription factor OsbHLH59 could be combined with the promoter of OsXIP in response to brown planthopper (BPH) treatment. In order to study whether OsbHLH59 was involved in regulating the expression of OsXIP and mediating rice resistance to BPH, OsbHLH59 overexpression transgenic lines were obtained by transgenic methods, and OsbHLH59 mutant lineswere obtained by using CRISPR/Cas9 system. The results showed that the expression levels of xylanase inhibitor OsXIP enhanced accompanied with the increased overexpression level of transcription factor gene OsbHLH59. Through the determination of agronomic traits, it was found that the growth of OsbHLH59 overexpression lines and OsXIP overexpression lines was less affected by the BPH treatment compared with wild type (WT). When WT plants and transgenic plants were exposed to BPH, the feeding preference of BPH in OsbHLH59 overexpression and OsXIP overexpression lines reduced compared with that of WT. With the BPH treatment, higher expression levels of defense-related genes were found in OsbHLH59 overexpression and OsXIP overexpression lines. In addition, compared with WT, OsbHLH59 overexpression and OsXIP overexpression lines had stronger abilities to remove excess H2O2 and higher antioxidant enzyme activities. This study reveals that OsbHLH59 can activate the expression of OsXIP, and OsXIP participates in rice resistance to BPH.



Key wordsxylanase inhibitor protein      OsXIP      OsbHLH59      gene expression      plant defence     
Published: 25 August 2022
CLC:  Q 943.2  
Fund:  National Natural Science Foundation of China(30971702);Research Grants from the Science and Technology Department of Zhejiang Province, China(LGN19C130004)
Corresponding Authors: Xiaoyan WENG     E-mail: 510557258@qq.com;xyweng@zju.edu.cn
About author: Lü Xueqi (https://orcid.org/0000-0003-0566-9494), E-mail: 510557258@qq.com
Cite this article:

Xueqi Lü, Ying XU, Yingying HUANG, Mingqi LIU, Xiaoyan WENG. OsbHLH59 involved in rice resistance to Nilaparvata lugens(St?l) by regulating the expression level of xylanase inhibitor protein OsXIP. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 453-464.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.07.072     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/453


转录因子OsbHLH59通过调控木聚糖酶抑制蛋白OsXIP表达水平影响水稻抗褐飞虱的机制研究(英文)

木聚糖酶抑制蛋白(xylanase inhibitor protein, XIP)在植物防御中发挥作用,实验室前期研究发现,水稻木聚糖酶抑制蛋白OsXIP能响应褐飞虱[Nilaparvata lugens (St?l)]胁迫。转录因子OsbHLH59可以与OsXIP的启动子结合以响应褐飞虱侵害。本研究利用转基因技术获得OsbHLH59过表达水稻株系并利用CRISPR/Cas9系统获得了OsbHLH59突变水稻株系,研究了转录因子OsbHLH59对OsXIP表达水平的影响及其在水稻抗褐飞虱中的作用。结果表明,OsbHLH59的过表达引起了OsXIP表达水平的上调。褐飞虱侵害对OsbHLH59过表达株系和OsXIP基因表达水平高的株系的生长水平影响相较野生型更小。与野生型相比,过表达OsbHLH59OsXIP基因均降低了褐飞虱的取食偏好。同时,OsbHLH59过表达株系和OsXIP过表达株系的防御相关基因表达水平更高,H2O2含量更低,保护性酶活性也更高。综上所述,OsbHLH59可以提高OsXIP的表达,OsXIP在水稻响应褐飞虱胁迫中发挥了重要作用。


关键词: 木聚糖酶抑制蛋白,  OsXIP,  OsbHLH59,  基因表达,  植物防御 
Primer nameSequence (5′→3′)
OsbHLH59-gR1

F: TAGGTCTCCGCTGCCCTGCGAgttttagagctagaa

R: ATGGTCTCACAGCGTCGGCACtgcaccagccgggaa

OsbHLH59-gR2

F: TAGGTCTCCCAATCTGTTTTAgttttagagctagaa

R: ATGGTCTCAATTGGTCAAGGCtgcaccagccgggaa

OsbHLH59-gR3

F: TAGGTCTCCAGAAAATTCGGAgttttagagctagaa

R: ATGGTCTCATTCTCACGGCAAtgcaccagccgggaa

OsbHLH59-gR4

F: TAGGTCTCCAGCAAGCTAAGTgttttagagctagaa

R: CGGGTCTCATGCTTGTCAGGAtgcaccagccggg

OsbHLH59-gR5

F: TAGGTCTCCCAGCTCGTCTGTgttttagagctagaa

R: CGGGTCTCAGCTGCATCACTCtgcaccagccggg

OsbHLH59-gR6

F: TAGGTCTCCGAGAAACAATCAgttttagagctagaa

R: CGGGTCTCATCTCGTAGCTTCtgcaccagccggg

Table 1 Primers used for plasmid construction
Gene nameSequence (5′→3′)
Actin-1

F: TTATGGTTGGGATGGGACA

R: AGCACGGCTTGAATAGCG

Actin-2

F: TCAGCAACTGGGATGATATGGAG

R: GCCGTTGTGGTGAATGAGTAAC

OsXIP

F: CAACAAGGACTACCGCGCCAC

R: AAACCATGACGCCTCCGAAGT

OsbHLH59

F: GCAGAGAAGGAGAGGCTGGA

R: ACCACTGCCACATTGCCATC

OsPR1

F: CAAAACTCGGCGCAGGAC

R: GCGGAGCCCCAGAAGATG

OsPR1b

F: ACTCCCCTCCCAAGCTCA

R: CTCTTCTCGCCCACCCAC

OsNH1

F: GTCGCCGAGCTCACCAAC

R: AGGCTTAGGCGTGCATCA

OsAOS2

F: GACGCCAAGAGCTTCCCC

R: GAGCTGCGACTCGACGGT

Table 2 Primers used for qRT-PCR analysis
Fig. 1 Identification of OsbHLH59 mutant rice and relative expression levels of OsbHLH59 and OsXIP in overexpression lines, mutant lines and WT plantsA. Relative expression levels of OsbHLH59 in OsbHLH59 overexpression rice plants; B. Relative expression levels of OsbHLH59 in OsbHLH59 mutant rice plants; C. Relative expression levels of OsXIP in the six lines. Different lowercase letters above bars indicate significant differences at the 0.05 probability level. Data represent means ± standard deviation (SD) of three independent replicates. D. DNA level sequencing of OsbHLH59 mutants. The dashed lines indicate deleted nucleotides. Red uppercase letters indicate inserted or substituted nucleotides. The numbers on the right indicate the type of mutation and the number of nucleotides involved. i, d and s stand for nucleotide insertion, deletion and substitution, respectively.
LineTillering stageHeading stageFilling stage
WT20.7±1.26a22.1±1.67a19.6±1.13a
OsXIP-119.6±0.58a22.0±1.47a19.0±1.71a
o-59-120.9±0.83a22.5±1.02a18.9±0.62a
c-59-120.6±0.86a23.2±0.98a19.2±0.86a
Table 3 Net photosynthetic rates of transgenic plants at different stages (μmol/(m2·s))
Fig. 2 Growth characteristics of overexpression lines, mutant lines and WT after the BPH treatmentCompared with WT, single asterisk (*) and double asterisks (**) indicate significant and highly significant differences at the 0.05 and 0.01 probability levels, respectively.
Fig. 3 Overexpression of OsXIP and OsHLH59 positively regulating rice resistance to BPHA-E. Average number of BPH per plant on pairs of lines after exposure for 1-48 h. Data represent means ± SD of five independent replicates. Compared with WT, single asterisk (*) and double asterisks (**) indicate significant and highly significant differences at the same treatment time at the 0.05 and 0.01 probability levels, respectively. F. Damaged phenotypes of six rice lines infected by fourth-instar BPH alone.
Fig. 4 Relative expression of OsbHLH59 and OsXIP in the overexpression lines, mutant lines and WT after the BPH treatmentDifferent lowercase letters above bars indicate significant differences among different lines at the same treatment time at the 0.05 probability level, and the same as below.
Fig. 5 Relative expression levels of defense-related genes in the overexpression lines, mutant lines and WT after the BPH treatment
Fig. 6 Changes in H2O2 contents and antioxidant enzyme activities in overexpression lines, mutant lines and WT after the BPH treatment
[1]   DEBYSER W, DERDELINCKX G, DELCOUR J A. Arabinoxylan and arabinoxylan hydrolysing activities in barley malts and worts derived from them[J]. Journal of Cereal Science, 1997, 26(1): 67-74. DOI:10.1006/jcrs.1996.0107
doi: 10.1006/jcrs.1996.0107
[2]   DORNEZ E, CROES E, GEBRUERS K, et al. Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense[J]. Critical Reviews in Plant Sciences, 2010, 29(4): 244-264. DOI:10.1080/07352689.2010.487780
doi: 10.1080/07352689.2010.487780
[3]   GEBRUERS K, BRIJS K, COURTIN C M, et al. Properties of TAXI-type endoxylanase inhibitors[J]. Biochimica et Biophysica Acta—Proteins and Proteomics, 2004, 1696(2): 213-221. DOI:10.1016/j.bbapap.2003.08.013
doi: 10.1016/j.bbapap.2003.08.013
[4]   JUGE N. Plant protein inhibitors of cell wall degrading enzymes[J]. Trends in Plant Science, 2006, 11(7): 359-367. DOI:10.1016/j.tplants.2006.05.006
doi: 10.1016/j.tplants.2006.05.006
[5]   BEAUGRAND J, GEBRUERS K, VERVERKEN C, et al. Antibodies against wheat xylanase inhibitors as tools for the id treatment and differential expression of XIP-family genes in rice[J]. Plant and Cell Physiology, 2007, 48(5): 700-714. DOI:10.1093/pcp/pcm038
doi: 10.1093/pcp/pcm038
[9]   ZHAN Y H, SUN X Y, RONG G Z, et al. Identification of two transcription factors activating the expression of OsXIP in rice defence response[J]. BMC Biotechnology, 2017, 17(1): 26. DOI:10.1186/s12896-017-0344-7
doi: 10.1186/s12896-017-0344-7
[10]   DU J H, ZHAI L H, GUO D L. Progress in bHLH transcription factors regulating the response to iron deficiency in plants[J]. Chinese Journal of Biotechnology, 2019, 35(5): 766-774. DOI:10.13345/j.cjb.180407
doi: 10.13345/j.cjb.180407
[11]   YANG T R, YAO S F, HAO L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J]. Plant Cell Reports, 2016, 35(11): 2309-2323. DOI:10.1007/s00299-016-2036-5
doi: 10.1007/s00299-016-2036-5
[12]   LI X H, YANG R, CHEN H M. The Arabidopsis thaliana mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA[J]. PLoS ONE, 2018, 13(3): e193458. DOI:10.1371/journal.‍pone.0193458
doi: 10.1371/journal.?pone.0193458
[13]   WANG M L, YANG D Y, MA F L, et al. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes[J]. Rice, 2019, 12(1): 9. DOI:10.1186/s12284-019-0267-0
doi: 10.1186/s12284-019-0267-0
[14]   YOSHIDA S, FORNO D A, COCK J H, et al. Laboratory Manual for Physiological Studies of Rice[M]. Laguna, Philippines: International Rice Research Institute, 1971.
[15]   WENG X Y, HUANG Y Y, HOU C X, et al. Effects of an exogenous xylanase gene expression on the growth of transgenic rice and the expression level of endogenous xylanase inhibitor gene RIXI [J]. Journal of the Science of Food and Agriculture, 2012, 93(1): 173-179. DOI:10.1002/jsfa.5746
doi: 10.1002/jsfa.5746
[16]   XIE K B, MINKENBERG B, YANG Y N. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. PNAS, 2015, 112(11): 3570-3575. DOI:10.1073/pnas.1420294112
doi: 10.1073/pnas.1420294112
[17]   THOMAS M R, MATSUMOTO S, CAIN P, et al. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification[J]. Theoretical and Applied Genetics, 1993, 86(2/3): 173-180. DOI:10.1007/BF00222076
doi: 10.1007/BF00222076
[18]   封洁琼,刘清,潘依,等. OsmiR156过表达对水稻分蘖数与生长生理相关性的影响[J].安徽农业科学,2014,42(11):3172-3174. DOI:10.13989/j.cnki.0517-6611.2014.11.053
FENG J Q, LIU Q, PAN Y, et al. Effects of OsmiR156 overexpression on the relationship between tiller number and growth physiology of Oryza sativa L.[J]. Journal of Anhui Agricultural Sciences, 2014, 42(11): 3172-3174. (in Chinese with English abstract). DOI:10.13989/j.cnki.0517-6611.2014.11.053
doi: 10.13989/j.cnki.0517-6611.2014.11.053
[19]   HE J, LIU Y Q, YUAN D Y, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonialyase pathway in rice[J]. PNAS, 2020, 117(1): 271-277. DOI:10.1073/pnas.1902771116
doi: 10.1073/pnas.1902771116
[20]   LU J, JU H P, ZHOU G X, et al. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice[J]. The Plant Journal, 2011, 68(4): 583-596. DOI:10.1111/j.1365-313X.2011.04709.x
doi: 10.1111/j.1365-313X.2011.04709.x
[21]   JANA S, CHOUDHURI M A. Glycolate metabolism of three submerged aquatic angiosperms during aging[J]. Aquatic Botany, 1981, 12: 345-354. DOI:10.1016/0304-3770(82)90026-2
doi: 10.1016/0304-3770(82)90026-2
[22]   KATO M, SHIMIZU S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1987, 65(4): 729-735. DOI:10.1139/b87-097
doi: 10.1139/b87-097
[23]   KOCHBA J, LAVEE S, SPIEGEL-ROY P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic 'Shamouti’ orange ovular callus lines[J]. Plant and Cell Physiology, 1977, 18: 463-467. DOI:10.1093/oxfordjournals.pcp.a075455
doi: 10.1093/oxfordjournals.pcp.a075455
[24]   SORENSEN A M, KRÖBER S, UNTE U S, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. The Plant Journal, 2003, 33(2): 413-423. DOI:10.1046/j.1365-313x.2003.01644.x
doi: 10.1046/j.1365-313x.2003.01644.x
[25]   MARTÍNEZ-GARCÍA J F, HUQ E, QUAIL P H. Direct targeting of light signals to a promoter element-bound transcription factor[J]. Science, 2000, 288(5467): 859-863. DOI:10.1126/science.288.5467.859
doi: 10.1126/science.288.5467.859
[26]   OGO Y, ITAI R N, NAKANISHI H, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. The Plant Journal, 2007, 51(3): 366-377. DOI:10.1111/j.1365-313X.2007.03149.x
doi: 10.1111/j.1365-313X.2007.03149.x
[27]   XU W R, ZHANG N B, JIAO Y T, et al. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis [J]. Molecular Biology Reports, 2014, 41(8): 5329-5342. DOI:10.1007/s11033-014-3404-2
doi: 10.1007/s11033-014-3404-2
[28]   ČERNÝ M, HABÁNOVÁ H, BERKA M, et al. Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks[J]. International Journal of Molecular Sciences, 2018, 19(9): 2812. DOI:10.3390/ijms19092812
doi: 10.3390/ijms19092812
[29]   SMIRNOFF N, ARNAUD D. Hydrogen peroxide metabolism and functions in plants[J]. New Phytologist, 2019, 221(3): 1197-1214. DOI:10.1111/nph.15488
doi: 10.1111/nph.15488
[30]   VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology, 2006, 44: 135-162. DOI:10.1146/annurev.phyto.44.070505.143425
doi: 10.1146/annurev.phyto.44.070505.143425
[31]   REYMOND P, FARMER E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion in Plant Biology, 1998, 1(5): 404-411. DOI:10.1016/S1369-5266(98)80264-1
doi: 10.1016/S1369-5266(98)80264-1
[1] Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.
[2] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.
[3] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.
[4] MEI Lei, ZHU Ye, XIAO Qinzhi, CHEN Jinhong, ZHU Shuijin. Advances in study on phytochelatin synthase in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 530-538.
[5] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[6] LONG Shiyun, JIANG Dongmei, CHEN Ziyu, GUAN Cheng, YI Zhixin, KANG Bo. Effect of exogenous spermidine on expression profile of reproductive hormone receptors in mouse ovaries.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 247-252.
[7] YUE Wucheng, CHEN Jiao, CI Yuanji, HUANG Shu, WANG Jun, WANG Chenghui. Effects of limb regeneration on molt, growth and related gene expression in Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 502-508.
[8] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.
[9] Wang Yan, Pan Changtian, Wang Jie, Qin Li, Zou Tao, Lu Gang. Effects of gibberellin on tomato stigma exsertion and hormonerelated gene expression under moderate heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 449-457.
[10] Jiang Ming, Chen Beibei, Guan Ming, Li Jinzhi, Huang Xiaomei, Gu Yunji . Cloning and expression analysis of a transcription factor gene BoWRKY2 from broccoli.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 153-159.
[11] . Isolation of mitogenactivated protein kinase SlMAPK12 gene and characterization of its expression pattern in Solanum lycopersicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 551-558.
[12] ZHANG Yongliang, SHENG Dongfeng, ZHU Yong. Cloning and characterization of Bombyx mandarina prophenoloxidase gene PPO1[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 256-262.
[13] WANG Sha‐sha,SUN Li‐li,XIAO Su‐qin,ZHOU Lei,SUN Zhen,CHEN Li‐mei. Effects of foliar spraying C1 compounds on physiological characters and expression levels of genes related to C1 metabolism , photosynthesis and stress response of Arabidopsis thaliana[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 631-641.
[14] WANG Fei-yan,WU Jian,ZHANG Jia-jing,CHENG Lin,KONG Fu-ling,PENG Zhen,LU Gang. Identification of auxin response factor SlARF8-1 gene and characterization of expression pattern of some SlARFs in Solanum lycopersicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 237-354.
[15] . [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2008, 34(1): 38-44.