Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (2): 269-279    DOI: 10.3785/j.issn.1008-9209.2022.03.281
Horticultural sciences     
Identification and analysis of heat shock transcription factor gene in Zizania latifolia
Licong CAI1(),Mingjia TANG1,Jin XU1,Zhenyu QI2,Feijun FAN3,Yanhong ZHOU1()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Agriculture and Rural Affairs Bureau of Lishui, Lishui 323000, Zhejiang, China
Download: HTML   HTML (   PDF(4666KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the function and potential applications of heat shock transcription factor (HSF) gene family on heat tolerance of Zizania latifolia of ‘Longjiao No. 2’, twenty-eight HSF proteins were identified and analyzed by bioinformatics methods. The physicochemical analysis showed that the theoretical isoelectric point was 4.77 to 11.63, and the molecular weight was 16.77-101.29 kDa, and the protein length was 239-661 amino acids, and the instability indexes of the whole family were more than 40. The multiple sequence alignment revealed that the DNA-binding domain of HSF protein was highly conserved with a length of about 100 amino acids. The phylogenetic tree of HSF proteins of Z. latifolia, Arabidopsis thaliana, Phyllostachys edulis, and Oryza sativa L. was constructed by MEGA 7.0 and the HSF proteins could be divided into A, B, and C classes. In the HSF family of Z. latifolia, there were 17 members in class A, seven in class B, and four in class C. The expression profiles of HSF genes under the heat stress was analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR), and the physiological indexes under the heat stress were also measured. The results showed that 14 HSF genes were at high expression levels (the expression levels were increased by more than 10 times) after the heat stress (42 ℃, 12 h). Among them, the expression levels of ZlHSF-04, ZlHSF-12, and ZlHSF-27 were up-regulated most obviously, which increased by 37, 36, and 44 times when compared with the normal temperature treatment (CK), respectively. Moreover, under the heat stress, the leaves became dry and curled with a large area of water loss and chlorosis, and the maximum photochemical efficiency (Fv /Fm) of photosystem Ⅱ was significantly reduced by 49.9% compared with the CK. Besides, the relative electrical leakage (REL), and the contents of malondialdehyde (MDA), proline (Pro), hydrogen peroxide (H2O2) increased significantly by 409%, 97%, 396%, and 99%, respectively. These results lay theoretical foundations for further study of the functions of the HSF gene family under heat stress of Z. latifolia.



Key wordsZizania latifolia      heat stock transcription factor      gene family      expression analysis     
Received: 28 March 2022      Published: 25 April 2023
CLC:  S645.2  
Corresponding Authors: Yanhong ZHOU     E-mail: 21916121@zju.edu.cn;yanhongzhou@zju.edu.cn
Cite this article:

Licong CAI,Mingjia TANG,Jin XU,Zhenyu QI,Feijun FAN,Yanhong ZHOU. Identification and analysis of heat shock transcription factor gene in Zizania latifolia. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 269-279.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.03.281     OR     https://www.zjujournals.com/agr/Y2023/V49/I2/269


茭白热激转录因子基因的鉴定与分析

为探究热激转录因子(heat shock transcription factor, HSF)基因家族在茭白耐热性中的功能及潜在应用,本试验以‘龙茭2号’为材料,利用生物信息学手段,鉴定出28个茭白HSF蛋白并对其进行分析。理化性质分析表明,茭白HSF家族蛋白的理论等电点为4.77~11.63,分子量为16.77~101.29 kDa,氨基酸长度为239~661个氨基酸,不稳定系数均大于40。多序列比对发现其DNA结合域具有高度保守性,长约为100个氨基酸。通过MEGA 7.0软件构建茭白、拟南芥、毛竹和水稻的HSF蛋白系统发育树,发现HSF蛋白可以分为A、B、C 3个分支,茭白HSF家族中含有17个A类成员、7个B类成员、4个C类成员。进一步通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)分析高温胁迫下茭白HSF基因家族的表达模式和热胁迫生理指标,结果表明,有14个HSF基因在高温胁迫(42 ℃,12 h)后处于高表达水平(表达量提高10倍以上),其中ZlHSF-04、ZlHSF-12、ZlHSF-27表达量上调最明显,与常温对照组(CK)相比分别上调37倍、36倍、44倍;同时,高温胁迫下茭白幼苗叶片出现大面积失水失绿的现象,叶片干枯卷曲,且光系统Ⅱ最大光化学效率较CK降低了49.9%,而相对电导率,丙二醛、脯氨酸、过氧化氢含量与CK相比分别增加了409%、97%、396%和99%。本结果为进一步研究HSF基因家族在茭白热激响应中的功能提供了理论依据。


关键词: 茭白,  热激转录因子,  基因家族,  表达分析 

基因编号

Gene ID

基因名称

Gene name

家族

Family

理论等电点

Theoretical pI

分子量

Molecular weight/kDa

氨基酸长度

Amino acid length

脂肪族

氨基酸指数

Aliphatic index

不稳定系数

Instability index

Zlat_10030921ZlHSF-01ZlHSFA26.5647.9242171.1450.37
Zlat_10024731ZlHSF-02ZlHSFA35.3850.3166171.5755.25
Zlat_10028403ZlHSF-03ZlHSFB25.4239.7940669.2054.93
Zlat_10001846ZlHSF-04ZlHSFA64.9941.0036370.4158.62
Zlat_10030564ZlHSF-05ZlHSFB46.8134.8931663.6463.14
Zlat_10023805ZlHSF-06ZlHSFA26.1240.8636165.5756.14
Zlat_10004208ZlHSF-07ZlHSFA45.1349.1944055.8656.56
Zlat_10032890ZlHSF-08ZlHSFA45.2249.0943857.4259.31
Zlat_10001964ZlHSF-09ZlHSFA45.1153.4247371.5253.24
Zlat_10014007ZlHSF-10ZlHSFB211.6316.7723973.4150.20
Zlat_10001414ZlHSF-11ZlHSFA65.6241.0635970.6751.55
Zlat_10037146ZlHSF-12ZlHSFB24.7733.1931257.3757.35
Zlat_10046041ZlHSF-13ZlHSFA45.1548.4643368.2255.59
Zlat_10041443ZlHSF-14ZlHSFB46.7230.9852764.7572.44
Zlat_10039236ZlHSF-15ZlHSFA25.6040.7035969.4452.13
Zlat_10004295ZlHSF-16ZlHSFA15.0151.9546772.0357.19
Zlat_10031706ZlHSF-17ZlHSFA14.8951.9446772.4456.88
Zlat_10047617ZlHSF-18ZlHSFB19.1332.5130067.5259.53
Zlat_10021194ZlHSF-19ZlHSFB49.2238.7735072.0348.77
Zlat_10001491ZlHSF-20ZlHSFC19.2526.7924670.2849.84
Zlat_10003200ZlHSF-21ZlHSFC25.6931.6129169.4240.53
Zlat_10019123ZlHSF-22ZlHSFA96.2945.1441471.4044.88
Zlat_10001624ZlHSF-23ZlHSFC15.8936.3233673.8756.13
Zlat_10004100ZlHSF-24ZlHSFC18.6826.8024470.0842.6
Zlat_10041209ZlHSF-25ZlHSFA85.0145.3640865.9649.64
Zlat_10024292ZlHSF-26ZlHSFA85.01101.2940969.8848.26
Zlat_10029481ZlHSF-27ZlHSFA24.9938.9934972.3848.31
Zlat_10027049ZlHSF-28ZlHSFA24.9638.9435373.2643.05
Table 1 Physicochemical properties of HSF family members in Z. latifolia
Fig. 1 Multiple sequence alignment of HSF proteins’ DBDs in Z. latifolia
Fig. 2 Phylogenetic tree of HSF proteins in Z. latifolia, P. edulis, A. thaliana, and O. sativa
Fig. 3 Distribution and types of conserved motifs of HSF family members in Z. latifolia
Fig. 4 Distribution of upstream promoters of HSF family members in Z. latifolia
Fig. 5 Gene structures of HSF family in Z. latifolia
Fig. 6 Expression profiles of HSF gene family in response to heat stress in Z. latifolia
Fig. 7 Effects of heat stress on phenotype (A) and Fv /Fm(B) of seedlings of Z. latifoliaDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level; n=3. The same as below.
Fig. 8 Effects of heat stress on REL (A), MDA content (B), Pro content (C), and H2O2 content (D) of leaves in Z. latifolia
[1]   王睿斌.小麦转录因子TaMYB108基因的克隆、表达分析及耐盐功能的研究[D].湖北,武汉:华中科技大学,2017.
WANG R B. Cloning, expression and functional analysis of a wheat transcription factor gene TaMYB108 [D]. Wuhan, Hubei: Huazhong University of Science and Technology, 2017. (in Chinese with English abstract)
[2]   刘栩铭,李敏,段琼,等.蓖麻RcHSF基因家族鉴定与冷胁迫下的表达模式分析[J].华北农学报,2020,35(5):62-71. DOI:10.7668/hbnxb.20191312
LIU X M, LI M, DUAN Q, et al. Identification of RcHSF gene family in castor and analysis of expression pattern under cold stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 62-71. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20191312
[3]   黄小云.大白菜和甘蓝热激转录因子基因家族鉴定及比较分析[D].江苏,南京:南京农业大学,2014. DOI:10.1007/s00438-014-0833-5
HUANG X Y. Genome-wide identification, classification and comparative analysis of heat shock transcription factor genes family in Chinese cabbage and cabbage[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2014. (in Chinese with English abstract)
doi: 10.1007/s00438-014-0833-5
[4]   陈勇兵,王燕,张海利.番茄热激转录因子(Hsf)基因家族鉴定及表达分析[J].农业生物技术学报,2015,23(4):492-501. DOI:10.3969/j.issn.1674-7968.2015.04.008
CHEN Y B, WANG Y, ZHANG H L. Identification and expression analysis of heat shock factor (Hsf) gene family in tomato (Solanum lycopersicum)[J]. Journal of Agricultural Biotechnology, 2015, 23(4): 492-501. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.04.008
[5]   BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences, 2004, 29(4): 471-487. DOI: 10.1007/BF02712120
doi: 10.1007/BF02712120
[6]   GUO J K, WU J, JI Q, et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis [J]. Journal of Genetics and Genomics, 2008, 35(2): 105-118. DOI: 10.1016/S1673-8527(08)60016-8
doi: 10.1016/S1673-8527(08)60016-8
[7]   SCHARF K D, ROSE S, ZOTT W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. The EMBO Journal, 1990, 9(13): 4495.
[8]   NOVER L, BHARTI K, DÖRING P, et al. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3): 177-189. DOI: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
[9]   MISHRA S K, TRIPP J, WINKELHAUS S, et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes and Development, 2002, 16(12): 1555-1567. DOI: 10.1101/gad.228802
doi: 10.1101/gad.228802
[10]   CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis [J]. Plant Physiology, 2007, 143(1): 251-262. DOI: 10.1104/pp.106.091322
doi: 10.1104/pp.106.091322
[11]   韦满棋.茭白种植现状及发展建议[J].新农业,2021,17:44-45.
WEI M Q. Current situation and development suggestions of Zizania latifolia cultivation[J]. New Agriculture, 2021, 17: 44-45. (in Chinese)
[12]   董桂君,乔勇进,王春芳,等.茭白采后生理变化及保鲜技术研究进展[J].保鲜与加工,2021,21(9):133-138. DOI:10.3969/j.issn.1009-6221.2021.09.021
DONG G J, QIAO Y J, WANG C F, et al. A review of research on postharvest physiological changes and color protection and freshness of Zizania latifolia [J]. Storage and Process, 2021, 21(9): 133-138. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-6221.2021.09.021
[13]   石敏.茭白黑粉菌耐热突变体的筛选与抗氧化特征研究[D].浙江,杭州:浙江大学,2013.
SHI M. Screening and antioxidant characteristics of heat-resistant mutants of Ustilago esculenta H.[D]. Hangzhou, Zhejiang: Zhejiang University, 2013. (in Chinese with English abstract)
[14]   邓建平,石敏,黄建中,等.不同海拔高度对茭白生长及孕茭的影响[J].中国蔬菜,2013(12):88-93. DOI:10.19928/j.cnki.1000-6346.2013.12.015
DENG J P, SHI M, HUANG J Z, et al. Effects of different altitudes on growth and culm-swelling of Zizania caduciflora (Turcz.) Hand.-Mazz.[J]. China Vegetables, 2013(12): 88-93. (in Chinese with English abstract)
doi: 10.19928/j.cnki.1000-6346.2013.12.015
[15]   娄伟平,吴旭江.高温干旱对新昌高山茭白的影响及对策[J].浙江气象,2004(3):24-26. DOI:10.3969/j.issn.1004-5953.2004.03.006
LOU W P, WU X J. Effects of high temperature and drought on Xinchang alpine Zizania latifolia and countermeasures[J]. Journal of Zhejiang Meteorology, 2004(3): 24-26. (in Chinese)
doi: 10.3969/j.issn.1004-5953.2004.03.006
[16]   LIN Y X, JIANG H Y, CHU Z X, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12: 76. DOI: 10.1186/1471-2164-12-76
doi: 10.1186/1471-2164-12-76
[17]   GIORNO F, GUERRIERO G, BARIC S, et al. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis[J]. BMC Genomics, 2012, 13: 639. DOI: 10.1186/1471-2164-13-639
doi: 10.1186/1471-2164-13-639
[18]   CHUNG E, KIM K M, LEE J H. Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max [J]. Journal of Genetics Genomics, 2013, 40(3): 127-135. DOI: 10.1016/j.jgg.2012.12.002
doi: 10.1016/j.jgg.2012.12.002
[19]   LIU A L, ZOU J, ZHANG X W, et al. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2): 142-149. DOI: 10.1007/s12374-010-9099-6
doi: 10.1007/s12374-010-9099-6
[20]   ZHOU N N, AN Y L, GUI Z C, et al. Identification and expression analysis of chitinase genes in Zizania latifolia in response to abiotic stress[J]. Scientia Horticulture, 2020, 261: 108952. DOI: 10.1016/j.scienta.2019.108952
doi: 10.1016/j.scienta.2019.108952
[21]   ZHOU S J, ZHANG P, JING Z G, et al. Genome-wide identification and analysis of heat shock transcription factor family in cucumber (Cucumis sativus L.)[J]. Plant Omics, 2013, 6(6): 449-455.
[22]   BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(Web Server issue): W369-W373. DOI: 10.1093/nar/gkl198
doi: 10.1093/nar/gkl198
[23]   VON KOSKULL-DÖRING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452-457. DOI: 10.1016/j.tplants.2007.08.014
doi: 10.1016/j.tplants.2007.08.014
[24]   CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009
[25]   SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 104-119. DOI: 10.1016/j.bbagrm.2011.10.002
doi: 10.1016/j.bbagrm.2011.10.002
[26]   TANG M J, XU L, WANG Y, et al. Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.)[J]. BMC Genomics, 2019, 20: 772. DOI: 10.1186/s12864-019-6121-3
doi: 10.1186/s12864-019-6121-3
[27]   HUANG B, HUANG Z N, MA R F, et al. Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Scientific Report, 2021, 11: 16492. DOI: 10.1038/s41598-021-95899-3
doi: 10.1038/s41598-021-95899-3
[28]   QI T C, HUANG H, SONG S S, et al. Regulation of jasmonate mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis [J]. The Plant Cell, 2015, 27(6): 1620-1633. DOI: 10.1105/tpc.15.00116
doi: 10.1105/tpc.15.00116
[29]   董立红,范瑞,陈永欣,等.玉米热激转录因子基因ZmHSF05的克隆与功能分析[J].西北植物学报,2020,40(8):1294-1302. DOI:10.7606/j.issn.1000-4025.2020.08.1294
DONG L H, FAN R, CHEN Y X, et al. Cloning and functional analysis of maize heat shock transcription factor gene ZmHSF05 [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1294-1302. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2020.08.1294
[30]   EXPÓSITO-RODRÍGUEZ M, BORGES A A, BORGES-PÉREZ A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato develop-ment process[J]. BMC Plant Biology, 2008, 8: 131. DOI: 10.1186/1471-2229-8-131
doi: 10.1186/1471-2229-8-131
[31]   HAHN A, BUBLAK D, SCHLEIFF E, et al. Crosstalk between Hsp90 and Hsp70chaperones and heat stress transcription factors in tomato[J]. The Plant Cell, 2011, 23(2): 741-755. DOI: 10.1105/tpc.110.076018
doi: 10.1105/tpc.110.076018
[32]   CZARNECKA-VERNER E, YUAN C X, SCHARF K D, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential[J]. Plant Molecular Biology, 2000, 43: 459-471.
[33]   GUO M, LIU J H, MA X, et al. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7: 114. DOI: 10.3389/fpls.2016.00114
doi: 10.3389/fpls.2016.00114
[34]   PERSONAT J M, TEJEDOR-CANO J, PRIETO-DAPENA P, et al. Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress[J]. BMC Plant Biology, 2014, 14: 56. DOI: 10.1186/1471-2229-14-56
doi: 10.1186/1471-2229-14-56
[35]   WANG R, MAO C J, JIANG C H, et al. One heat shock transcription factor confers high thermal tolerance in clematis plants[J]. International Journal of Molecular Sciences, 2021, 22(6): 2900. DOI: 10.3390/ijms22062900
doi: 10.3390/ijms22062900
[36]   SUZUKI N, BAJAD S, SHUMAN J, et al. The transcrip-tional co-activator MBFIc is a key regulator of thermo-tolerance in Arabidopsis thaliana [J]. Journal of Biology and Chemistry, 2008, 283(14): 9269-9275. DOI: 10.1074/jbc.M709187200
doi: 10.1074/jbc.M709187200
[1] Min HONG,Mingyang HE,Rikui WANG,Lian ZHOU,Jing WANG,Yu FENG. Changes of anthocyanin, sugar and acid accumulation and expression characteristics of related metabolic genes in Tarocco blood oranges during room temperature storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 589-597.
[2] Le ZHU,Xinze ZHAO,Lixi JIANG. Genome-wide identification and analysis of potassium ion transporter HAK/KUP/KT family in rapeseed (Brassica napus L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 303-313.
[3] Youxuan WANG,Mengyu WANG,Yubo LI,Han TAO,Chuchu XIA,Kaimei HUANG,Qiaomei WANG. Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 314-324.
[4] Faxiang WAN,Lianzhen WANG,Jun GAO. Bioinformatics of 1-aminocyclopropane-1-carboxylic acid synthase gene from eggplant and its expression analysis in response to adversity stresses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 325-334.
[5] Lingjuan XUAN,Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN. Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 407-416.
[6] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[7] CHEN Beibei, JIANG Ming, MIAO Lixiang, LI Wenping. Cloning and expression analysis of a transcription factor gene BoWRKY3 from Brassica oleracea var. italica.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 243-249.
[8] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[9] JIANG Ming,CHEN Xiao-shang,LI Jin-zhi. Cloning, expression and sequence analysis of anthocyanidin synthase gene BcANS in Brassica campestris var. purpurea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 393-398.
[10] FENG Ying, YU Chao. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(1): 1-15.