Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (4): 407-416    DOI: 10.3785/j.issn.1008-9209.2019.09.291
Horticulture     
Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora
Lingjuan XUAN(),Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN()
College of Landscape Architecture, Zhejiang A & F University, Hangzhou 311300, China
Download: HTML   HTML (   PDF(8795KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to clarify the mechanism of SOC1 inthe process of flower formation in Magnolia liliflora, two SOC1 genes were screened out based on the transcriptome datain M. sinostellata, and the complete coding regions of these two SOC1 genes were obtained by homologous gene cloning. The bioinformatics software was used to analyze the information of these two genes, and the expression patterns in different flower bud differentiation periods were verified by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The results showed that the length of MlSOC1-1 was 666 bp, which encoding 221 amino acids, and the length of MlSOC1-2 was 654 bp, which encoding 217 amino acids. Both of these two MlSOC1 genescontained highly conservative SOC1 motifs, which indicated that the genes belong to the SOC1/TM3 subfamily. Phylogenetic tree analysis showed that MlSOC1-1 was closely related to SOC1 homologous gene of M. praecocissima, while MlSOC1-2 was closely related to SOC1 homologous gene of M. virginiana. Subcellular localization experiments revealed that both genes were located on the nucleus. Besides, the results of expression analysis showed that compared with MlSOC1-2, in addition to participating in the flower transformation of the flower bud in M. liliflora, MlSOC1-1 might also play a role in the flower opening and the synthesis of flower organs. These results show that there are differences in the roles of these two MlSOC1 genes in flower bud differentiation, which provides a theoretical basis for further study of the role of MlSOC1 genes in flower formation of M. liliflora.



Key wordsMagnolia liliflora      MlSOC1 gene      flower bud differentiation      subcellular localization      expression analysis     
Received: 29 September 2019      Published: 11 September 2020
CLC:  Q 785  
Corresponding Authors: Yamei SHEN     E-mail: 1075855127@qq.com;yameishen@zafu.edu.cn
Cite this article:

Lingjuan XUAN,Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN. Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 407-416.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.09.291     OR     http://www.zjujournals.com/agr/Y2020/V46/I4/407


紫玉兰MlSOC1基因亚细胞定位及花芽分化时期的表达分析

为了探究SOC1基因在紫玉兰(Magnolia liliflora)成花过程中的作用,通过对景宁木兰转录组数据(NCBI数据库编号:SRP129819)进行筛选,利用同源克隆的方法得到2个SOC1基因的编码区序列;运用在线生物信息学分析工具对这2个基因进行序列分析,并结合实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction, qRT-PCR)分析这2个基因在紫玉兰不同花芽分化期的表达模式。将获得的2个SOC1基因分别命名为MlSOC1-1MlSOC1-2,其中:MlSOC1-1长度为666 bp,编码221个氨基酸;MlSOC1-2长度为654 bp,编码217个氨基酸。2个SOC1基因都具有保守的SOC1基序,属于SOC1/TM3亚家族基因。系统进化树分析结果显示,MlSOC1-1与皱叶木兰(Magnolia praecocissima)中的SOC1同源基因亲缘关系最近,而MlSOC1-2与北美木兰(M. virginiana)中的SOC1同源基因亲缘关系最近,2个基因都与木兰科木兰属植物的遗传距离最近。亚细胞定位试验结果发现,MlSOC1-1MlSOC1-2都被定位于细胞核上。表达分析结果表明:MlSOC1-1MlSOC1-2基因相比,前者除了参与紫玉兰芽的成花转变外,还有可能对紫玉兰花器官合成有一定作用。通过对紫玉兰2个MlSOC1基因的研究,发现2个MlSOC1基因在花芽分化过程中的作用存在差异,这为进一步研究MlSOC1基因在紫玉兰成花过程中的作用提供了理论基础。


关键词: 紫玉兰,  MlSOC1基因,  花芽分化,  亚细胞定位,  表达分析 

MlSOC1基因功能

Function of MlSOC1 gene

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

基因克隆

Gene cloning of MlSOC1

GcSOC1-1-FATCGCAGCATCTGTAAC
GcSOC1-1-RTTAGGCAGCGAGGTCGA
GcSOC1-2-FCCATTCTCGATCTTGCTG
GcSOC1-2-RCAATGGGTAGCGTGGTA

表达分析

Expression analysis of MlSOC1

qRTSOC1-1-FCTGAGGTGGCATTGATC
qRTSOC1-1-RTCGAACTTCCATTGCTG
qRTSOC1-2-FTAGAGGAACTGCAACAC
qRTSOC1-2-RAACGGTGTTTTCTTCTGATAGG
qRTActin-FACGAATCCGGTCCATCCATT
qRTActin-RCCGTTCCACCAGGCAATATG

载体构建

Vector construction of MlSOC1

VcSOC1-1-FCATGCCATGGATGGTGAGGGGAAAAACGCAGATGA
VcSOC1-1-RGGTACTAGTCCGAGCTTTCATGGGATAACGTTTTTTC
VcSOC1-2-FCATGCCATGGATGGTGAGAGGGAAGACGCAGATGA
VcSOC1-2-RGGTACTAGTCCGACCTTGCAATGGGTAGCGTGTTA
Table 1 Primers for cloning, expression analysis and vector construction of MlSOC1 in M. liliflora
Fig. 1 Process of flower bud differentiation in M. lilifloraA-F. External morphological characteristics of bud during flower bud differentiation; G-L. Internal morphological characteristics of bud during flower bud differentiation. Le: Leaf; Fl: Flower primordium; Sc: Scale; Se: Sepal primordium; Pe: Petal primordium; St: Stamen primordium; Te: Tepal; Pi: Pistil primordium.
Fig. 2 Nucleotide sequence alignment of MlSOC1-1 and MlSOC1-2 genes
Fig. 3 Sequence alignment of MlSOC1-1 and MlSOC1-2 with SOC1 amino acid sequences of other speciesACV88635.1: Magnolia virginiana; XP_023900830.1: Quercus suber; NP_001267909.1: Vitis vinifera; AHI_85950.1: Carya cathayensis; NP_001236377.1: Glycine max.
Fig. 4 Phylogenetic tree betweenMlSOC1-1/2proteins and SOC1 proteins of other species
Fig. 5 Schematic diagram of vector construction1: pCMBIA1302-MlSOC1-1/2 vector; 2: pCMBIA1302 vector.
Fig. 6 Subcellular localization of MlSOC1-1/2 proteinsA-C. Subcellular localization of GFP protein; D-F. Subcellular localization of MlSOC1-1 protein; G-I. Subcellular localization of MlSOC1-2 protein.
Fig. 7 Expression analysis of MlSOC1-1 and MlSOC1-2 of leaves and flower buds in different flower bud differentiation periodsA-B. Leaf; C-D. Flower bud. S1: Undifferentiation period; S2: Early differentiation period; S3: Sepal primordium differentiation period; S4: Petal primordium differentiation period; S5: Stamen primordium differentiation period; S6: Pistil primordium differentiation period. Single asterisk (*) indicates significant differences at the 0.05 probability level; double asterisks (**) indicate highly significant differences at the 0.01 probability level; triple asterisks (***) indicate extremely high significant differences at the 0.001 probability level.
[1]   AUSIN I, ALONSO B C, MARTINEZ Z J M. Environmental regulation of flowering. International Journal of Developmental Biology, 2005,49(5):689-705. DOI:10.1387/ijdb.052022ia
doi: 10.1387/ijdb.052022ia
[2]   齐仙惠,巫东堂,李改珍,等.拟南芥成花调控途径的研究进展.山西农业大学学报(自然科学版),2018,38(9):1-7. DOI:10.13842/j.cnki.issn1671-8151.201805004
QI X H, WU D T, LI G Z, et al. Regulation pathways of flowering in Arabidopsis thaliana. Journal of Shanxi Agricultural University (Natural Science Edition), 2018,38(9):1-7. (in Chinese with English abstract)
doi: 10.13842/j.cnki.issn1671-8151.201805004
[3]   WELLMER F, RIECHMANN J L. Gene networks controlling the initiation of flower development. Trends in Genetics, 2010,26(12):519-527. DOI:10.1016/j.tig.2010.09.001
doi: 10.1016/j.tig.2010.09.001
[4]   SIMPSON G G, DEAN C. Arabidopsis, the Rosetta Stone of flowering time? Science, 2002,296(5566):285-289. DOI:10.1126/
science.296.5566.285
doi: 10.1126/
[5]   LOHMANN J U, HONG R L, HOBE M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 2001,105(6):793-803. DOI:10.1016/S0092-8674(01)00384-1
doi: 10.1016/S0092-8674(01)00384-1
[6]   MOON J, LEE H, KIM M S, et al. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology, 2005,46(2):292-299. DOI:10.1093/pcp/pci024
doi: 10.1093/pcp/pci024
[7]   张艺能,周玉萍,陈琼华,等.拟南芥开花时间调控的分子基础.植物学报,2014,49(4):469-482. DOI:10.3724/SP.J.1259.2014.00469
ZHANG Y N, ZHOU Y P, CHEN Q H, et al. Molecular basis of flowering time regulation in Arabidopsis. Chinese Bulletin of Botany, 2014,49(4):469-482. (in Chinese)
doi: 10.3724/SP.J.1259.2014.00469
[8]   KOORNNEEF M, ALONSO B C, ANTON J M, et al. Genetic control of flowering time in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49(1):345-370.
[9]   FERRARIO S, BUSSCHER J, J FRANKENet al. Ectopic expression of the Petunia MADS-box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. The Plant Cell, 2004,16(6):1490-1505. DOI:10.1105/tpc.019679
doi: 10.1105/tpc.019679
[10]   NAKAMURA T, SONG I J, FUKUDA T, et al. Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. Journal of Plant Research, 2005,118(3):229-234. DOI:10.1007/s10265-005-0215-5
doi: 10.1007/s10265-005-0215-5
[11]   LIU C, CHEN H, ER H L, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 2008,135(8):1481-1491. DOI:10.1242/dev.020255
doi: 10.1242/dev.020255
[12]   MELZER S, LENS F, GENNEN J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics, 2008,40(12):1489-1492. DOI:10.1038/ng.253
doi: 10.1038/ng.253
[13]   刘传娇,王顺利,薛璟祺,等.牡丹开花调控转录因子基因PrSOC1的克隆与表达分析.园艺学报,2014,41(11):2259-2267. DOI:10.16420/j.issn.0513-353x.2014.11.013
LIU C J, WANG S L, XUE J Q, et al. Molecular cloning and expression analysis of the flowering regulating transcription factor PrSOC1 gene in tree peony. Acta Horticulturae Sinica, 2014,41(11):2259-2267. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2014.11.013
[14]   邹晨辉.芥菜开花整合子SOC1的克隆和表达分析.重庆:西南大学,2014.
ZOU C H. Cloning and expression analysis of flowering integrator SOC1 in Brassica juncea Coss. Chongqing: Southwest University, 2014. (in Chinese with English abstract)
[15]   马广莹,朱开元,史小华,等.红掌2个SOC1基因的克隆、序列与表达分析.浙江大学学报(农业与生命科学版),2017,43(3):289-297. DOI:10.3785/j.issn.1008-9209.2016.10.111
MA G Y, ZHU K Y, SHI X H, et al. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium. Journal of Zhejiang University (Agriculture and Life Sciences), 2017,43(3):289-297. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2016.10.111
[16]   崔波,王洁琼,宋彩霞,等.蝴蝶兰SOC1基因的克隆及表达分析.分子植物育种,2016,14(3):548-553. DOI:10.13271/j.mpb.014.000548
CUI B, WANG J Q, SONG C X, et al. Cloning and expression analysis of SOC1 gene from Phalaenopsis. Molecular Plant Breeding, 2016,14(3):548-553. (in Chinese with English abstract)
doi: 10.13271/j.mpb.014.000548
[17]   唐婷,胥晓,吴庆贵,等.紫玉兰(Magnolia liliflora)的繁育系统研究.四川林业科技,2013,34(1):5-10. DOI:10.3969/j.issn.1003-5508.2013.01.002
TANG T, XU X, WU Q G, et al. A study of the breeding system of Magnolia liliflora. Journal of Sichuan Forestry Science and Technology, 2013,34(1):5-10. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-5508.2013.01.002
[18]   范李节,陈梦倩,王宁杭,等.3种玉兰属花芽分化时期及形态变化.东北林业大学学报,2018,46(1):27-31. DOI:10.13759/j.cnki.dlxb.2018.01.006
FAN L J, CHEN M Q, WANG N H, et al. Flower bud differentiation of three species of Magnolia. Journal of Northeast Forestry University, 2018,46(1):27-31. (in Chinese with English abstract)
doi: 10.13759/j.cnki.dlxb.2018.01.006
[19]   宣铃娟,范李节,王宁杭,等.景宁木兰AP1同源基因的克隆及序列分析//中国观赏园艺研究进展2018.北京:中国林业出版社,2018:575-581.
XUAN L J, FAN L J, WANG N H, et al. Cloning and sequence analysis of AP1 homologous gene in Magnolia sinostellata//Progress in Ornamental Horticulture in China, 2018. Beijing: China Forestry Publishing, 2018:575-581. (in Chinese with English abstract)
[20]   周琴,张思思,包满珠,等.高等植物成花诱导的分子机理研究进展.分子植物育种,2018,16(11):3681-3692. DOI:10.13271/j.mpb.016.003681
ZHOU Q, ZHANG S S, BAO M Z, et al. Advances on molecular mechanism of floral initiation in higher plants. Molecular Plant Breeding, 2018,16(11):3681-3692. (in Chinese with English abstract)
doi: 10.13271/j.mpb.016.003681
[21]   武祖发,胡建军,斯华文,等.玉兰花芽分化观察.中国中药杂志,1991,16(2):79-81.
WU Z F, HU J J, SI H W, et al. Observation on flower bud differentiation of Magnolia denudata. China Journal of Chinese Materia Medica, 1991,16(2):79-81. (in Chinese with English abstract)
[22]   XU F,RUDALL P J. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Systematics and Evolution, 2006,258(1):1-15. DOI:10.1007/s00606-005-0361-1
doi: 10.1007/s00606-005-0361-1
[23]   SHORE P, SHARROCKS A D. The MADS-box family of transcription factors. FEBS Journal, 1995,229(1):1-13.
[24]   BECKER A, THEISSEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 2003,29(3):464-489. DOI:10.1016/S1055-7903(03)00207-0
doi: 10.1016/S1055-7903(03)00207-0
[25]   LEE J, LEE I. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 2010,61(9):2247-2254. DOI:10.1093/jxb/erq098
doi: 10.1093/jxb/erq098
[26]   VOOGD C, WANG T C, VARKONYI-GASIC E. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany, 2015,66(15):4699-4710. DOI:10.1093/jxb/erv234
doi: 10.1093/jxb/erv234
[27]   FU J, QI S, YANG L, et al. Characterization of ChrysanthemumClSOC1-1 and ClSOC1-2, homologous genes of SOC1. Plant Molecular Biology Reporter, 2014,32(3):740-749. DOI:10.1007/s11105-013-0679-8
doi: 10.1007/s11105-013-0679-8
[28]   LEE J E, OH M, PARK H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal, 2008,55(5):832-843. DOI:10.1111/j.1365-313X.2008.03552.x
doi: 10.1111/j.1365-313X.2008.03552.x
[29]   WIGGE P A, KIM M C, JAEGER K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005,309(5737):1056-1059. DOI:10.1126/science.1114358
doi: 10.1126/science.1114358
[30]   FAN L J, CHEN M Q, DONG B, et al. Transcriptomic analysis of flower bud differentiation in Magnolia sinostellata. Genes, 2018,9(4):212-227. DOI:10.3390/genes9040212
doi: 10.3390/genes9040212
[31]   李玉舒,杨炜茹,程堂仁,等.梅花PmSOC1-like基因的克隆与表达分析.华北农学报,2016,31(5):78-85. DOI:10.7668/hbnxb.2016.05.012
LI Y S, YANG W R, CHENG T R, et al. Molecular cloning and expression analysis of flowering regulating transcription factor PmSOC1-likegene in Prunus mume. Acta Agriculturae Boreali-Sinica, 2016,31(5):78-85. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.05.012
[32]   LEE H, SUH S S, PARK E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development, 2000,14(18):2366-2376. DOI:10.1101/gad.813600
doi: 10.1101/gad.813600
[33]   李晶晶.蔷薇科植物TFL1和SOC1基因的克隆及表达分析.武汉:华中农业大学,2011.
LI J J. Cloning and expression analysis of TFL1 and SOC1 genes in Rosaceae plants. Wuhan: Huazhong Agricultural University, 2011. (in Chinese with English abstract)
[1] Xinyuan CHEN,Renguo TIAN,Linzhang SHEN,Yiming YIN,Lixin ZHU,Huijuan JIA. Effect of the blue-red light ratio in supplemental light-emitting diode on pitaya flower bud differentiation and fruit quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 14-22.
[2] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[3] Guan Xiaoyan, Chen Lifei, He Yanjun, Wang Jie, Lu Gang*. Subcellular localization and tissue expression pattern of SlMAPK7 gene in tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 598-604.
[4] WANG Ya1,2, LIU Jianping1, XU Mengyun1, JI Weijie1, TU Jumin1, ZHANG Xiaobo1*. Cloning and expression profile of an ubiquitin-conjugating enzyme-like gene OsCROC-1A in rice (Oryza sativa L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(4): 360-368.
[5] ZHAO Li, XIA Wenqiang, CAI Xinzhong*. Identification of subcellular localization of Arabidopsis AGO2[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(1): 1-.
[6] CHEN Beibei, JIANG Ming, MIAO Lixiang, LI Wenping. Cloning and expression analysis of a transcription factor gene BoWRKY3 from Brassica oleracea var.  italica.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 243-249.
[7] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[8] JIANG Ming,CHEN Xiao-shang,LI Jin-zhi. Cloning, expression and sequence analysis of anthocyanidin synthase gene BcANS in Brassica campestris var. purpurea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 393-398.