Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 14-22    DOI: 10.3785/j.issn.1008-9209.2018.02.261
Horticulture     
Effect of the blue-red light ratio in supplemental light-emitting diode on pitaya flower bud differentiation and fruit quality
Xinyuan CHEN1(),Renguo TIAN2,Linzhang SHEN3,Yiming YIN4,Lixin ZHU5,Huijuan JIA1()
1. Department of Horticulture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Sanjing Lighting Company Limited, Huzhou 313000, Zhejiang,China
3. Economic Crop Technology Extension Station of Changxing County, Huzhou 313100, Zhejiang,China
4. Economic Crop Technology Extension Station of Huzhou, Huzhou 313000, Zhejiang,China
5. Changxing Anxin Family Farm, Huzhou 313100, Zhejiang,China
Download: HTML   HTML (   PDF(991KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking a red pitaya cultivar, ‘Zimilong’ as the test material, we set up different blue-red light ratios in light-emitting diode (LED), 1∶8, 1∶6, 1∶4, 1∶3 and 1∶2 to treat the pitaya and used white LED light as the control (CK). Besides, the light sources were placed at two positions, 50 cm and 70 cm above the plant. We also set up no artificial light group as a blank control (CK0). By comparing the flower bud differentiation, phenology and fruit quality, we attempted to choose the best light supplement that would advance spring budding, increase the amount of buds and also improve the quality in pitaya. The result revealed that flower bud differentiation was improved when given light fill. In addition, when the blue-red light ratio in LED light was 1∶4 at 50 cm above the plant, the number of buds and productivity were best among all treatments, and the average yield even reached 2.236 kg/plant. When the blue-red light ratio in LED light was 1∶2 at 50 cm above the plant, the total soluble solid content and fruit quality were the highest.



Key wordspitaya      blue-red light ratio      light-emitting diode      flower bud differentiation      production      quality     
Received: 26 February 2018      Published: 28 March 2019
CLC:  S 667.9  
Corresponding Authors: Huijuan JIA     E-mail: camillecxy@163.com;jiahuijuan@zju.edu.cn
Cite this article:

Xinyuan CHEN,Renguo TIAN,Linzhang SHEN,Yiming YIN,Lixin ZHU,Huijuan JIA. Effect of the blue-red light ratio in supplemental light-emitting diode on pitaya flower bud differentiation and fruit quality. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 14-22.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.02.261     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/14


不同蓝红光比例发光二极管对火龙果花芽分化和果实品质的影响

以红肉火龙果‘紫蜜龙’为试验材料,设蓝光与红光比例分别为1∶8、1∶6、1∶4、1∶3、1∶2的发光二极管(light-emitting diode, LED)为实验处理,白光LED作对照进行补光(CK),光源分置在50 cm和70 cm这2个高度;同时设置不补光对照(CK0)。通过比较不同处理间的花芽分化、物候期、果实品质,筛选出能够促进春季提前现蕾、增加花芽数量及提高果实品质的最佳补光方案。结果表明:补光处理分化的花芽数量比不补光多;蓝光与红光比例1∶4、光源高度50 cm的组合,花芽分化数量最多,产量显著高于其他处理,平均单产达到了2.236 kg/株;蓝光与红光比例1∶2、光源高度50 cm的组合,果实可溶性固形物含量相对最高,品质最佳。


关键词: 火龙果,  蓝红光比,  发光二极管,  花芽分化,  产量,  品质 

与植株冠层垂直距离

Vertical distance from the plant canopy/cm

光源高度

Light source height/cm

蓝红光比例Blue-red ratio
1∶8 1∶6 1∶4 1∶3 1∶2 CK
0 50 10.45 11.87 10.68 14.32 13.88 7.44
70 7.51 4.47 6.93 6.52 4.05 4.72
30 50 4.37 3.81 4.22 5.09 4.99 2.44
70 4.17 2.99 3.54 4.46 2.89 2.52
70 50 2.09 2.01 2.32 2.21 1.93 0.73
70 1.66 1.84 1.42 2.05 2.22 1.35
Table 1 Light intensity (photosynthetic photon flux density, PPFD) of different blue-red ratio LEDs μmol/(m2 ·s)
Fig. 1 Effects of different light source heights and blue-red ratio LEDs on the number of pitaya flower buds
Fig.2 Pitaya growth curve treated with different blue-red ratios on the light source height of 50 cm
Fig.3 Pitaya growth curve treated with different blue-red ratios on the light source height of 70 cm

评价指标

Evaluation index

光源高度

Light source height/cm

蓝红光比例 Blue-red ratio

1∶8 1∶6 1∶4 1∶3 1∶2 CK CK0

单果质量

Fruit mass/g

50 287.08Aa 251.25Aa 248.47Aa 276.25Aa 222.01Aa 176.31Ba 247.98a
70 262.16Aa 263.37Aa 245.79Aa 257.00Aa 231.13Aa 249.93Aa 247.98a
TSS/°Brix 50 14.36Ab 14.30Ab 14.40Ab 14.38Ab 15.54Aa 14.82Ab 14.32b
70 12.75Ac 14.34Ab 14.48Ab 14.36Ab 15.54Aa 15.24Aa 14.32b
TA/% 50 0.42Aab 0.47Aa 0.48Aa 0.46Aab 0.42Bb 0.43Bb 0.42b
70 0.37Bg 0.50Aa 0.45Bd 0.44Ae 0.46Ac 0.48Ab 0.42f
TSS/TA 50 33.85 30.36 30.01 31.51 36.80 34.40 34.06
70 34.61 28.63 32.06 32.98 33.54 32.03 34.06

硬度

Solidity/N

50 2.518Aa 2.421Aa 2.524Aa 2.581Aa 2.497Aa 2.543Aa 2.589a
70 2.538Aa 2.449Aa 2.599Aa 2.451Aa 2.543Aa 2.683Aa 2.589a

平均单产/(kg/株)

Average yield/(kg/plant)

50 1.053Ab 0.754Ab 2.236Aa 0.737Ab 0.962Ab 0.411Bb 0.661b
70 0.874Aa 1.317Aa 1.393Ba 1.114Aa 0.385Bb 1.583Aa 0.661ab
Table 2 Comparison of pitaya fruit qualities treated with different blue-red ratios and light source heights

测定指标

Measuring index

光源高度

Light source height/cm

蓝红光比例 Blue-red ratio

1∶8 1∶6 1∶4 1∶3 1∶2 CK CK0

w(葡萄糖)

Glucose content

50 77.363Ac 95.655Aa 73.584Bc 84.785Ab 84.361Bb 84.851Ab 78.501c
70 73.859Be 90.168Ba 85.660Abc 84.912Ac 88.214Aab 84.716Ac 78.501d

w(果糖)

Fructose content

50 78.768Ac 96.144Aa 74.676Bd 85.485Ab 86.232Bb 87.170Ab 80.825c
70 74.223Bd 90.298Ba 86.187Ab 86.405Ab 90.451Aa 86.872Ab 80.825c

w(蔗糖)

Sucrose content

50 3.504Aa 0.277Ab 3.368Ba 0.661Ab 0.399Ab 0.460b
70 3.061Bb 0.567Bcd 3.739Aa 0.204d 0.731Ac 0.634Acd 0.460cd

w(苹果酸)

Malic acid content

50 4.629Aa 4.089Ba 4.545Aa 4.873Aa 4.548Aa 4.753Aa 4.823a
70 4.004Ac 5.408Aa 2.449Ab 4.965Ab 4.839Ab 5.031Aab 4.823b

w(柠檬酸)

Citric acid content

50 0.620Ab 0.699Aa 0.430Bc
70 0.386Bc 0.608Bb 0.660Aa
 

测定指标

Measuring index

部位

Part

光源高度

Light source height/cm

蓝红光比例 Blue-red ratio

1∶8 1∶6 1∶4 1∶3 1∶2 CK CK0

w(甜菜红素)

Betacyanin content

果皮

Peel

50 0.339Aa 0.337Aa 0.280Bd 0.296Ac 0.317Ab 0.325Aab 0.292c
70 0.290Be 0.309Bc 0.308Ac 0.304Ad 0.315Ab 0.333Aa 0.292e

果肉

Flesh

50 0.329Aa 0.295Ab 0.293Bb 0.291Ab 0.296Ab 0.287Ab 0.320a
70 0.299Bb 0.283Bc 0.313Aa 0.305Ab 0.298Ab 0.295Ab 0.320a

w(甜菜黄素)

Betaxanthin content

果皮

Peel

50 0.206Aa 0.212Aa 0.171Bc 0.184Ab 0.193Ab 0.211Aa 0.185b
70 0.174Bc 0.189Bb 0.191Ab 0.188Ab 0.198Ab 0.212Aa 0.185b

果肉

Flesh

50 0.183Aa 0.171Ab 0.168Bb 0.168Ab 0.165Ab 0.166Ab 0.188a
70 0.170Bb 0.164Bc 0.180Aab 0.174Ab 0.170Ab 0.172Ab 0.188a

w(甜菜素)

Total amount of betalain

果皮

Peel

50 0.546Aa 0.549Aa 0.451Be 0.480Ad 0.510Ac 0.536Ab 0.477d
70 0.464Bc 0.497Bb 0.499Ab 0.493Ab 0.514Ab 0.545Aa 0.477c

果肉

Flesh

50 0.512Aa 0.465Ab 0.461Bb 0.459Bb 0.461Ab 0.453Ab 0.508a
70 0.469Bb 0.447Bc 0.494Aa 0.479Ab 0.467Ab 0.467Ab 0.508a
Table 4 Comparison of betalain content in pitaya treated with different blue-red ratios and light source heights
[1]   WU L C , HSU H W, CHEN Y C , et al . Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 2006,95(2):319-327.
[2]   BELTRANOROZCO M , CARMEN, OLIBACOBA T G . Ascorbic acid, phenolic content and antioxidant capacity of red, cherry, yellow and white types of pitaya cactus fruit (Stenocereus stellatus Riccobono). Agrociencia, 2012,43(2):153-162.
[3]   WICHIENCHOT S , JATUPORNPIPAT M , RASTALL R A . Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 2010,120(3):850-857.
[4]   TENORE G C , NOVELLINO E , BASILE A . Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods, 2012,4(1):129-136.
[5]   蒋飞荣,徐福君,钭凌娟,等 .红肉火龙果在浙江金华引种表现及栽培技术总结.现代园艺,2016(1):30-31.
JIANG F R , XU F J , DOU L J , et al . Introduction performances and cultivation technique of red pitaya in Jinhua, Zhejiang. Xiandai Horticulture, 2016(1):30-31. (in Chinese)
[6]   高荣孚,张鸿明 .植物光调控的研究进展.北京林业大学学报,2002,24(5/6):235-243.
GAO R F , ZHANG H M . Advances of researches on photoregulation in plants. Journal of Beijing Forestry University, 2002,24(5/6):235-243. (in Chinese with English abstract)
[7]   赵文东,郭修武,王欣欣,等 .光质对延迟栽培巨峰葡萄果实品质的影响.中国果树,2011(1):20-22.
ZHAO W D , GUO X W , WANG X X , et al . Effect of light quality on fruit quality of delayed cultivation of Jufeng grape. China Fruits, 2011(1):20-22. (in Chinese)
[8]   张克坤,刘凤之,王孝娣,等 .不同光质补光对促早栽培‘瑞都香玉’葡萄果实品质的影响.应用生态学报,2017,28(1):115-126.
ZHANG K K , LIU F Z , WANG X T , et al . Effects of supplementary light with different wavelengths on fruit quality of ‘Ruidu Xiangyu’ grape under promoted cultivation. Chinese Journal of Applied Ecology, 2017,28(1):115-126. (in Chinese with English abstract)
[9]   JIANG Y L , LIAO Y Y , LIN T S , et al . The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience, 2012,47(8):1063-1067.
[10]   余意 .水蜜桃杂交优系及其亲本的主要品质特性比较研究.杭州:浙江大学,2015:11-13.
YU Y . Research on main characteristics and quality of peach hybrid system and its parents. Hangzhou: Zhejiang University, 2015:11-13. (in Chinese with English abstract)
[11]   CASTELLANOS-SANTIAGO E , YAHIA E M . Identification and quantification of betalains from the fruits of 10 mexican prickly pear cultivars by high-performance liquid chroma-tography and electrospray ionization mass spectrometry. Journal of Agricultural & Food Chemistry, 2008,56(14):5758-5764.
[12]   MCCREE K J . The action spectrum absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 1972,9:191-216.
[13]   SAGER J C , SMITH W O , EDWARDS J L , et al . Use of spectral data to determine photosynthetic efficiency and phytochrome photoequilibria. Transactions of the ASABE, 1986,31(6):1882-1889.
[14]   JIAO Y L , LAU O S, DENG X W . Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007,8:217-230.
[15]   ESKINS K . Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiologia Plantarum, 2010,86(3):439-444.
[16]   ANDRE?S F , COUPLAND G . The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012,13:627-639.
[17]   SHIBUYA T , KANAYAMA Y . Flowering response to blue light and its molecular mechanisms in Arabidopsis and horticultural plants. Advances in Horticultural Science, 2014,28(4):179-183.
[18]   杨立文,付建新,亓帅,等 .高等植物开花时间的蓝光调控:隐花色素介导的光信号传导.分子植物育种,2015,13(2):450-460.
YANG L W , FU J X , QI S , et al . Blue light regulating flowering time in higher plants: cryptochromes meated signal transduction. Molecular Plant Breeding, 2015,13(2):450-460. (in Chinese with English abstract)
[19]   GUO H W , YANG H Y , MOCKLER T C , et al . Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998,279(5355):1360-1363.
[20]   LIU L J , ZHANG Y C , LI Q H , et al . COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis . The Plant Cell, 2008,20:292-306.
[21]   MOCKLER T , YANG H Y , YU X H , et al . Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(4):2140-2145.
[22]   HEO J W, LEE C W, MURTHY H N , et al . Influence of light quality and photoperiod on flowering of Cyclamen persicum, Mill. cv.‘Dixie White’. Plant Growth Regulation, 2003,40(1):7-10.
[23]   HEO J W, LEE C W, CHAKRABARTY D , et al . Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regulation, 2002,38(3):225-230.
[24]   韦峰 .不同光质及补光时间对几种蔬菜生长的影响.银川:宁夏大学,2015:19-24.
WEI F . Effects of different light qualities and different supplementary lighting time on the growth of several kind of vegetables. Yinchuan: Ningxia University, 2015:19-24. (in Chinese with English abstract)
[25]   孙娜 .光质对番茄生长、生理代谢及果实产量品质的影响.济南:山东农业大学,2015:18-22.
SUN N . Effects of light quality on growth, physiological metabolism, fruit yield and quality of tomato. Jinan: Shandong Agricultural University, 2015:18-22. (in Chinese with English abstract)
[26]   刘晓英,徐文栋,焦学磊,等 .不同配比红蓝LED光对黄瓜果实产量和品质的影响.植物资源与环境学报,2016,25(2):80-84.
LIU X Y , XU W D , JIAO X L , et al . Effect of different proportions of red and blue LED lights on yield and quality of fruit of Cucumis sativus . Journal of Plant Resources and Environment, 2016,25(2):80-84. (in Chinese with English abstract)
[27]   刘庆,连海峰,刘世琦,等 .不同光质LED光源对草莓光合特性、产量及品质的影响.应用生态学报,2015,26(6):1743-1750.
LIU Q , LIAN H F , LIU S Q , et al . Effect of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry. Chinese Journal of Applied Ecology, 2015,26(6):1743-1750. (in Chinese with English abstract)
[28]   颜昌瑞,林宗贤 .台湾果树产期调节技术的研发与推广.福建农业学报,2000(增刊1):126-130.
YAN C R , LIN Z X . Development and promotion of production regulation technology of Taiwan fruit tree. Fujian Journal of Agricultural Sciences, 2000(Suppl.1):126-130. (in Chinese)
[29]   王绍辉,孔云,陈青君,等 .不同光质补光对日光温室黄瓜产量与品质的影响.中国生态农业学报,2006,14(4):119-121.
WANG S H , KONG Y , CHEN Q J , et al . The effect of different light qualities on cucumber fruit quality and yield in greenhouse. Chinese Journal of Eco-Agriculture, 2006,14(4):119-121. (in Chinese with English abstract)
[30]   谢景,刘厚诚,宋世威,等 .侧面补光对温室黄瓜(Cucumis sativus L. cv. Shenchun)果实生长和品质的影响.沈阳农业大学学报,2013,44(5):616-621.
XIE J , LIU H C , SONG S W , et al . Effect of different light qualities interlighting on growth and quality of cucumber (Cucumis sativus L. cv.Shenchun) fruit in greenhouse. Journal of Shenyang Agricultural University, 2013,44(5):616-621. (in Chinese with English abstract)
[31]   崔瑾,马志虎,徐志刚,等 .不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响.园艺学报,2009,36(5):663-670.
CUI J , MA Z H, XU Z G , et al . Effect of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Horticulturae Sinica, 2009,36(5):663-670. (in Chinese with English abstract)
[32]   刘晓英,常涛涛,郭世荣,等 .红蓝LED光全生育期照射对樱桃番茄果实品质的影响.中国蔬菜,2010(22):21-27.
LIU X Y , CHANG T T , GUO S R , et al . Effect of irradiation with blue and red LED on fruit quality of cherry tomato during growth period. China Vegetables, 2010(22):21-27. (in Chinese with English abstract)
[33]   阳圣莹,白胜,蒋浩宏,等 .不同补光处理对设施草莓光合特性及果实品质的影响.山西农业科学,2016,44(9):1298-1303.
YANG S Y , BAI S , JIANG H H , et al . Effect of different supplemental lighting treatments on photosynthetic charac-teristics and fruit quality of strawberry in greenhouse. Journal of Shanxi Agricultural Sciences, 2016,44(9):1298-1303. (in Chinese with English abstract)
[34]   刘晓英 .LED光源对樱桃番茄生育和光合作用影响的研究.南京:南京农业大学,2010:66-74.
LIU X Y . Studies for effect of LED light on growth and development, photosynthesis of cherry tomato seedlings. Nanjing: Nanjing Agricultural University, 2010:66-74. (in Chinese with English abstract)
[35]   王彬,郑伟,蔡永强 .黔龙1号火龙果果实发育中果形、干重及溶质分配变化.贵州农业科学,2010,38(3):154-156.
WANG B , ZHENG W , CAI Y Q . Change of fruit shape, dry weight and solute distribution of Qianlong 1 (a pitaya variety) during fruit development. Guizhou Agricultural Sciences, 2010,38(3):154-156. (in Chinese with English abstract)
[36]   王彬 .火龙果果实发育规律及果实品质分析.长沙:湖南农业大学,2008:15-23.
WANG B . Fruit development regularity and quality analysis of pitaya (Hylocereus spp.). Changsha: Hunan Agricultural University, 2008:15-23. (in Chinese with English abstract)
[37]   王金乔,马翠凤,张学娟,等 .‘金都1号’火龙果果实生长发育规律研究.热带农业科学,2017,37(2):24-27.
WANG J Q , MA C F, ZHANG X J , et al . The fruit growth and development of pitaya ‘Jindu No.1’. Chinese Journal of Tropical Agriculture, 2017,37(2):24-27. (in Chinese with English abstract)
[38]   仲冉,何珺 .红肉火龙果中两种甜菜苷色素稳定性研究.食品研究与开发,2017,38(15):16-19.
ZHONG R , HE J . Research on stability of two betanin pigments from flesh of red-fleshed pitaya. Food Research and Development, 2017,38(15):16-19. (in Chinese with English abstract)
[1] Zhennan YE, Fei’er WANG, Lingye JI, Jie YU. Agricultural production structure adjustment based on a multi-objective control in the Tiaoxi watershed.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 66-74.
[2] Fuyin HOU, Zhiqing YANG, Changkuan CHEN, Kai SHI, Chongfu JIN, Yingjiang CHEN. Effect of grape seed proanthocyanidin extract on intestine, slaughter performance, lipid metabolism and meat quality of broilers.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 119-125.
[3] XIANG Jie, WANG Fuqiang, GUO Baoguang, WANG Qinggang, YU Chengqun, SHEN Zhenxi, SHAO Xiaoming. Effects of mixtures and intercropping of common vetch and oat in valley area of Tibet on the yield and quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 555-564.
[4] NI Jiadan, PAN Shizhe, DAN Fan, JIANG Yihong. Effects of tea polyphenols-chitosan complex solution on changes of quality indicators under storage in Miichthys miiuy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 594-600.
[5] CHEN Shanshan, ZHOU Yekai, ZHANG Zhiming, ZHANG Min, WANG Qiaomei. Effects of carbon dioxide enrichment on fruit development and quality of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 318-326.
[6] WANG Guiyue, ZHAO Fucheng, HAN Hailiang, BAO Fei, TAN Heping, YU Qiying. Analysis of yield, quality and resistance of fresh maize cultivars in Zhejiang Province and corresponding breeding objectives[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 343-355.
[7] ZHAO Qianming, ZHU Longji, ZHAN Kang, HUO Yongjiu, ZHAO Guoqi.  Effects of alfalfa meal with different particle sizes on production performance and blood biochemical index of Yangzhou goose[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 253-261.
[8] XU Hongrui, CHEN Xiaolian, SHI Jianqing, SONG Qiongli. Effects of Artemisia argyi on the antioxidant activity, laying performance and egg quality in laying hens under heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 113-119.
[9] DING Jinting*, ZANG Zelin, HUANG Min . Penaeus vannamei aquaculture water quality prediction based on the improved back propagation neural network[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 128-136.
[10] YANG Xiaokuan, CHANG Xuedong . Two kinds of Pyrus Ussurian pears pomace analysis of physicochemical properties and their effects on the production of ham sausage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 95-103.
[11] ZHOU Wenbin, CHENG Zhehong, ZHAO Yunpeng, FU Chengxin . Contribution of environmental and genetic variation to chemical similarity of Maca (Lepidium meyenii Walp.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 731-738.
[12] DING Wenya, LIN Ruoyun, ZHOU Weiwei, ZHOU Kai, LIN Xianyong. Comparative study on the difference of growth and nutritional quality for lettuce (Lactuca sativa L.) between aeroponic and hydroponic cultivation systems under different nitrogen levels[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 703-712.
[13] WANG Lili, GUO Wei, FU Chunna, YAN Hong. Isolation and screening of an electrochemically active strain Bacillus cereus sp. WL027 using phenol as fuel and preliminary study on its mechanism of electricity production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 654-664.
[14] FANG Ping, LIU Weiguo, LIU Xiaode, LIU Ting, CHI Xiaoyu, XU Yan, PANG Ting, PENG Xiao, CAI Ling, YANG Wenyu. Effect of maize-soybean intercropping on quality of vegetable soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 556-.
[15] ZHOU Xuan, DING Junshan, WU Lianghuan, LU Ruohui, YANG Guobiao, WANG Xu. Effects of compound fertilizers by different processes on yield and yield quality of pakchoi (Brassica chinensis L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 626-.