Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 341-348    DOI: 10.3785/j.issn.1008-9209.2022.04.064
Horticultural sciences     
Cloning and expression analysis of petal spur development related gene TCP4 in Impatiens uliginosa
Yang LI(),Fan LI,Danchen MENG,Linju LI,Chunmei WEI,Meijuan HUANG(),Haiquan HUANG()
College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University/Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration)/Yunnan Engineering Research Center for Functional Flower Resources and Industrialization/Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming 650224, Yunnan, China
Download: HTML   HTML (   PDF(3717KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the regulation mechanism of TCP4 gene on the development of petal spur of Impatiens uliginosa, the full length cDNA of TCP4 gene in I. uliginosa (named as IuTCP4) was cloned by reverse transcription polymerase chain reaction, and its sequence was analyzed by bioinformatics. Then, real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to investigate the spatiotemporal expression pattern of IuTCP4 gene at different developmental stages and different tissue locations of petal spur. The results showed that the full-length cDNA of two copies (IuTCP4.1 and IuTCP4.2) of TCP4 gene in I. uliginosa were 1 194 bp and 1 173 bp, encoding 397 and 390 amino acids, respectively, and neither contained introns. Both of IuTCP4.1 and IuTCP4.2 encoded proteins were unstable and hydrophilic without signal peptide and transmembrane domain. The homology of amino acid sequences of TCP4 protein between I. uliginosa and other 15 species, such as tea (Camellia sinensis) and balsam pear (Momordica charantia), reached 66.11%. In the phylogenetic tree, IuTCP4.1 and IuTCP4.2 clustered into one branch, suggesting that the two copies of IuTCP4 are paralogous genes. The results of qRT-PCR showed that IuTCP4.1 was differentially expressed between petal spur and limb at both the early stage and blooming stage, with the highest expression quantity in the limb at the early stage; IuTCP4.2 was differentially expressed between petal spur and limb at all three developmental stages, and the highest expression quantity was observed in the petal spur at the early stage. In conclusion, IuTCP4 plays a certain regulatory role in the development of petal spur and mainly functions at the early stage of petal spur development. It is provided a theoretical basis for the development mechanism of petal spur, flower shape improvement and new variety cultivation of Impatiens.



Key wordsImpatiens uliginosa      petal spur      TCP4 gene      gene cloning      expression analysis     
Received: 06 April 2022      Published: 25 June 2023
CLC:  Q78  
Corresponding Authors: Meijuan HUANG,Haiquan HUANG     E-mail: 1050502487@qq.com;xmhhq2001@163.com;haiquanl@163.com
Cite this article:

Yang LI,Fan LI,Danchen MENG,Linju LI,Chunmei WEI,Meijuan HUANG,Haiquan HUANG. Cloning and expression analysis of petal spur development related gene TCP4 in Impatiens uliginosa. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 341-348.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.04.064     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/341


滇水金凤花距发育相关基因TCP4的克隆及表达分析

为探究滇水金凤(Impatiens uliginosaTCP4基因(IuTCP4)对花距发育的调控作用,通过反转录聚合酶链反应技术克隆其cDNA全长,对其序列进行生物信息学分析,并采用实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)技术探讨IuTCP4基因在花距的不同发育阶段及不同组织部位的时空表达模式。结果表明:滇水金凤IuTCP4基因2个拷贝(IuTCP4.1IuTCP4.2)的cDNA全长分别为1 194、1 173 bp,各编码397个和390个氨基酸,且均不包含内含子;IuTCP4.1IuTCP4.2所编码的蛋白均为不稳定的亲水性蛋白,且均不存在信号肽和跨膜结构域,两者与茶(Camellia sinensis)、苦瓜(Momordica charantia)等15个物种TCP4蛋白的同源性达到66.11%。在系统发育树中这2个拷贝聚为一支,推测它们为旁系同源基因。qRT-PCR结果显示:IuTCP4.1在初期、开花期的花距和檐部存在差异性表达,且在初期的檐部表达量最高;IuTCP4.2在3个发育时期的花距和檐部均存在差异性表达,且在初期的花距中表达量最高。综上所述,IuTCP4基因在花距发育过程中具有一定的调控作用,且主要在花距发育初期发挥作用。上述结果为凤仙花花距发育机制、花形改良和新品种培育提供了一定的理论依据。


关键词: 滇水金凤,  花距,  TCP4基因,  基因克隆,  表达分析 

基因

Gene

引物序列(5→3

Primer sequence (5→3)

IuTCP4.1

F: ATGGGAGGAGATACTCATAATACC

R: TTAATGGCGAGAATCGGAG

IuTCP4.2

F: ATGGGAAGAGGAGCTAACTC

R: TCAATCGATAATATTATTATGTTGAGAGTCGG

Table 1 Primer sequences of IuTCP for full length amplification
Fig. 1 Three stages of development (A) and tissue location (B) of petal spur in Impatiens uliginosa

基因

Gene

引物序列(5→3

Primer sequence (5→3)

IuTCP4.1

F: AGATTGTCGAGGTTCAGGGC

R: TCACTCTGTTTCCTGCGGTC

IuTCP4.2

F: GGAGGAGTTCGTGGGACAAG

R: GCACCTACCGGGAAGAACA

IuActin

F: TGAATGTCCCTGCTGTTTG

R: ACCTTCCGCATAACTTTACC

Table 2 Primer sequences of IuTCP for qRT-PCR
Fig. 2 PCR amplification results of IuTCP4.1 and IuTCP4.2
参量 ParameterIuTCP4.1IuTCP4.2

分子量

Molecular weight/kDa

42.8142.83

理论等电点

Theoretical isoelectric

point (pI)

6.436.22

分子式

Molecular formula

C1 854H2 826N570O597S5C1 854H2 863N563O594S9

原子总数

Total number of atoms

5 8525 883

不稳定指数

Instability index

61.65(不稳定)71.13(不稳定)

脂肪族氨基酸指数

Aliphatic index

56.2460.28

亲水性平均系数

Grand average of

hydropathicity

-0.770-0.784

信号肽

Signal peptide

跨膜结构域

Transmembrane

domain

Table 3 Bioinformatics analysis of IuTCP4 protein in Impatiens uliginosa
Fig. 3 Sequence homology alignment of IuTCP4 protein in Impatiens uliginosa
Fig. 4 Phylogenetic tree of TCP4 protein homologous sequences
Fig. 5 Relative expression quantity of IuTCP4 genes in petal spur and limbat three stages of Impatiens uliginosaDifferent lowercase letters above bars show significant differences at the 0.05 probability level, and n=3.
[1]   VLAŠÁNKOVÁ A, PADYŠÁKOVÁ E, BARTOŠ M, et al. The nectar spur is not only a simple specialization for long-proboscid pollinators[J]. New Phytologist, 2017, 215(4): 1574-1581. DOI: 10.1111/nph.14677
doi: 10.1111/nph.14677
[2]   YANT L, COLLANI S, PUZEY J, et al. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1803): 20142778. DOI: 10.1098/rspb.2014.2778
doi: 10.1098/rspb.2014.2778
[3]   CULLEN E, FERNÁNDEZ-MAZUECOS M, GLOVER B J. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion[J]. Annals of Botany, 2018, 122(5): 801-809. DOI: 10.1093/aob/mcx213
doi: 10.1093/aob/mcx213
[4]   RAHELIVOLOLONA E M, FISCHER E, JANSSENS S B, et al. Phylogeny, infrageneric classification and species delimitation in the Malagasy Impatiens (Balsaminaceae)[J]. PhytoKeys, 2018, 110: 51-67. DOI: 10.3897/phytokeys.110.28216
doi: 10.3897/phytokeys.110.28216
[5]   孙海芹,李昂,班玮,等.濒危植物独花兰的形态变异及其适应意义[J].生物多样性,2005,13(5):376-386. DOI:10.1360/biodiv.050070
SUN H Q, LI A, BAN W, et al. Morphological variation and its adaptive significance for Changnienia amoena, an endangered orchid[J]. Biodiversity Science, 2005, 13(5): 376-386. (in Chinese with English abstract)
doi: 10.1360/biodiv.050070
[6]   STANG M, KLINKHAMER P G L, VAN DER MEIJDEN E. Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance?[J]. Oecologia, 2007, 151(3): 442-453. DOI: 10.1007/s00442-006-0585-y
doi: 10.1007/s00442-006-0585-y
[7]   PACINI E, NEPI M, VESPRINI J L. Nectar biodiversity: a short review[J]. Plant Systematics and Evolution, 2003, 238(1/2/3/4): 7-21. DOI: 10.1007/s00606-002-0277-y
doi: 10.1007/s00606-002-0277-y
[8]   HODGES S A. Floral nectar spurs and diversification[J]. International Journal of Plant Sciences, 1997, 158(S6): S81-S88. DOI: 10.1086/297508
doi: 10.1086/297508
[9]   KAY K M, WHITTALL J B, HODGES S A. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects[J]. BMC Evolutionary Biology, 2006, 6: 36. DOI: 10.1186/1471-2148-6-36
doi: 10.1186/1471-2148-6-36
[10]   KRAMER E M, HODGES S A. Aquilegia as a model system for the evolution and ecology of petals[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1539): 477-490. DOI: 10.1098/rstb.2009.0230
doi: 10.1098/rstb.2009.0230
[11]   MONNIAUX M, Cells HAY A., walls, and forms endless [J]. Current Opinion in Plant Biology, 2016, 34: 114-121. DOI: 10.1016/j.pbi.2016.10.010
doi: 10.1016/j.pbi.2016.10.010
[12]   BOX M S, DODSWORTH S, RUDALL P J, et al. Charac-terization of Linaria KNOX genes suggests a role in petal-spur development[J]. The Plant Journal, 2011, 68(4): 703-714. DOI: 10.1111/j.1365-313X.2011.04721.x
doi: 10.1111/j.1365-313X.2011.04721.x
[13]   PUZEY J R, GERBODE S J, HODGES S A, et al. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1733): 1640-1645. DOI: 10.1098/rspb.2011.1873
doi: 10.1098/rspb.2011.1873
[14]   SHARMA B, YANT L, HODGES S A, et al. Understanding the development and evolution of novel floral form in Aquilegia [J]. Current Opinion in Plant Biology, 2014, 17: 22-27. DOI: 10.1016/j.pbi.2013.10.006
doi: 10.1016/j.pbi.2013.10.006
[15]   MACK J L K, DAVIS A R. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae)[J]. Annals of Botany, 2015, 115(4): 641-649. DOI: 10.1093/aob/mcu261
doi: 10.1093/aob/mcu261
[16]   GOLZ J F, KECK E J, HUDSON A. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum [J]. Current Biology, 2002, 12(7): 515-522. DOI: 10.1016/s0960-9822(02)00721-2
doi: 10.1016/s0960-9822(02)00721-2
[17]   BOX M S, DODSWORTH S, RUDALL P J, et al. Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii [J]. Journal of Experimental Botany, 2012, 63(13): 4811-4819. DOI: 10.1093/jxb/ers152
doi: 10.1093/jxb/ers152
[18]   刘丽娟,高辉.TCP家族基因研究进展[J].生物技术通报,2016,32(9):14-22. DOI:10.13560/j.cnki.biotech.bull.1985.2016.09.003
LIU L J, GAO H. Research progress on the family of TCP genes[J]. Biotechnology Bulletin, 2016, 32(9): 14-22. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.003
[19]   TRÉMOUSAYGUE D, GARNIER L, BARDET C, et al. Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells[J]. The Plant Journal, 2003, 33(6): 957-966. DOI: 10.1046/j.1365-313x.2003.01682.x
doi: 10.1046/j.1365-313x.2003.01682.x
[20]   BROHOLM S K, TÄHTIHARJU S, LAITINEN R A E, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence[J]. PNAS, 2008, 105(26): 9117-9122. DOI: 10.1073/pnas.0801359105
doi: 10.1073/pnas.0801359105
[21]   张寒英,胡江琴,向太和,等.百脉根花对称性基因LjCYC3转化烟草的研究[J].浙江大学学报(农业与生命科学版),2011,37(1):13-21. DOI:10.3785/j.issn.1008-9209.2011.01.003
ZHANG H Y, HU J Q, XIANG T H, et al. Study on transformation of tobacco plant with flower symmetry gene LjCYC3 in Lotus japonicus [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(1): 13-21. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2011.01.003
[22]   李新艺,李洋,黄武略,等.滇水金凤TTG1同源基因的克隆及表达分析[J].分子植物育种,2021,19(21):7030-7036. DOI:10.13271/j.mpb.019.007030
LI X Y, LI Y, HUANG W L, et al. Cloning and expression analysis of TTG1 homologous genes in Impatiens uliginosa [J]. Molecular Plant Breeding, 2021, 19(21): 7030-7036. (in Chinese with English abstract)
doi: 10.13271/j.mpb.019.007030
[23]   LUO C, LI Y, BUDHATHOKI R, et al. Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: insights into genome structures, mutational hotspots, compara-tive and phylogenetic analysis with its congeneric species[J]. PLoS ONE, 2021, 16(4): e0248182. DOI: 10.1371/journal.pone.0248182
doi: 10.1371/journal.pone.0248182
[24]   刘春浩,梁楠松,于磊,等.水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J].北京林业大学学报,2017,39(6):22-31. DOI:10.13332/j.1000-1522.20160359
LIU C H, LIANG N S, YU L, et al. Cloning, analyzing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica [J]. Journal of Beijing Forestry University, 2017, 39(6): 22-31. (in Chinese with English abstract)
doi: 10.13332/j.1000-1522.20160359
[25]   雷宁,李淑霞,彭明.木薯MeTCP4转录因子的克隆、表达分析及植物表达载体的构建[J].分子植物育种,2018,16(5):1517-1523. DOI:10.13271/j.mpb.016.001517
LEI N, LI S X, PENG M. Cloning and expression analysis of MeTCP4 transcription factor from cassava and construction of plant expression vector[J]. Molecular Plant Breeding, 2018, 16(5): 1517-1523. (in Chinese with English abstract)
doi: 10.13271/j.mpb.016.001517
[26]   朱煜.紫草LeTCP4基因的克隆及功能分析[D].江苏,南京:南京大学,2012.
ZHU Y. Cloning, expression and functional analysis of LeTCP 4 gene in Lithospermum erythrorhizon [D]. Nanjing, Jiangsu: Nanjing University, 2012. (in Chinese with English abstract)
[27]   周延培,张雅剑,伊华林.柑橘TCP家族生物信息学及表达谱分析[J].果树学报,2016,33(5):513-522. DOI:10.13925/j.cnki.gsxb.20150192
ZHOU Y P, ZHANG Y J, YI H L. Bioinformatics identification and expression analysis of the Citrus TCP gene family[J]. Journal of Fruit Science, 2016, 33(5): 513-522. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20150192
[28]   刘俊,黄容,程占超,等.毛竹TCP基因家族全基因组鉴定与分析[J].基因组学与应用生物学,2018,37(12):5388-5397. DOI:10.13417/j.gab.037.005388
LIU J, HUANG R, CHENG Z C, et al. Genome-wide identification and the whole analysis of TCP gene family in moso bamboo (Phyllostachys edulis)[J]. Genomics and Applied Biology, 2018, 37(12): 5388-5397. (in Chinese with English abstract)
doi: 10.13417/j.gab.037.005388
[29]   李坤杰,谭杉杉,孙勃,等.芥菜TCP转录因子家族全基因组鉴定及表达分析[J].四川农业大学学报,2019,37(4):459-468. DOI:10.16036/j.issn.1000-2650.2019.04.005
LI K J, TAN S S, SUN B, et al. Genome-wide identification and analysis of TCP transcription factor family in Brassica juncea [J]. Journal of Sichuan Agricultural University, 2019, 37(4): 459-468. (in Chinese with English abstract)
doi: 10.16036/j.issn.1000-2650.2019.04.005
[30]   魏沙沙,邱小凤,蔡雪玲,等.铁观音茶树转录因子TCP4基因的克隆与序列分析[J].茶叶学报,2018,59(3):113-119. DOI:10.3969/j.issn.1007-4872.2018.03.001
WEI S S, QIU X F, CAI X L, et al. Cloning and sequence analysis of transcription factors TCP4 gene in Tieguanyin (Camellia sinensis)[J]. Acta Tea Sinica, 2018, 59(3): 113-119. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4872.2018.03.001
[31]   陶聪聪.矮牵牛TCP3TCP4基因敲除对生长发育的影响[D].重庆:西南大学,2018.
TAO C C. Effects of TCP3 and TCP4 gene knockout on growth and development in Petunia [D]. Chongqing: Southwest University, 2018. (in Chinese with English abstract)
[32]   PALATNIK J F, ALLEN E, WU X L, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. DOI: 10.1038/nature01958
doi: 10.1038/nature01958
[33]   KOYAMA T, OHME-TAKAGI M, SATO F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana [J]. Plant Signaling & Behavior, 2011, 6(5): 697-699. DOI: 10.4161/psb.6.5.14979
doi: 10.4161/psb.6.5.14979
[34]   TANAKA Y, YAMAMURA T, OSHIMA Y, et al. Creating ruffled flower petals in Cyclamen persicum by expression of the chimeric cyclamen TCP repressor[J]. Plant Biotechnology, 2011, 28(2): 141-147. DOI: 10.5511/plantbiotechnology.10.1227a
doi: 10.5511/plantbiotechnology.10.1227a
[1] Licong CAI,Mingjia TANG,Jin XU,Zhenyu QI,Feijun FAN,Yanhong ZHOU. Identification and analysis of heat shock transcription factor gene in Zizania latifolia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 269-279.
[2] Min HONG,Mingyang HE,Rikui WANG,Lian ZHOU,Jing WANG,Yu FENG. Changes of anthocyanin, sugar and acid accumulation and expression characteristics of related metabolic genes in Tarocco blood oranges during room temperature storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 589-597.
[3] Hui LI,Wei FENG,Junjie YU,Mingyin ZHANG,Chunmiao ZHOU,Yongkai TANG. Research progress of peroxiredoxingene in crustaceans[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 284-294.
[4] Youxuan WANG,Mengyu WANG,Yubo LI,Han TAO,Chuchu XIA,Kaimei HUANG,Qiaomei WANG. Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 314-324.
[5] Faxiang WAN,Lianzhen WANG,Jun GAO. Bioinformatics of 1-aminocyclopropane-1-carboxylic acid synthase gene from eggplant and its expression analysis in response to adversity stresses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 325-334.
[6] Huichun LIU,Jiaqiang ZHANG,Guangying MA,Jianghua ZHOU,Wenting XU,Kaiyuan ZHU. Cloning of PsDHN1 gene of Paeonia suffruticosa and waterlogging tolerance analysis of transgenic Arabidopsis with PsDHN1 gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 335-346.
[7] Lingjuan XUAN,Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN. Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 407-416.
[8] XU Kangkang, DING Tianbo, YAN Yi, LI Can, YANG Wenjia. Expression analysis of glutathione S-transferase genes in Lasioderma serricorne (Coleoptera: Anobiidae) subjected to CO2-enriched atmosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 599-607.
[9] ZHENG Qunyan, PAN Xiaoyi, SHEN Jinyu, CHEN Shaobo, XU Yang, XU Ting. Molecular cloning and tissue expression analysis of glutamate dehydrogenase gene from Macrobrachium rosenbergii under MrTV infection stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 639-648.
[10] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[11] WANG Jiaqing, DONG Huiming, LI Zhengang, LI Shaoming, WANG Ruonan, FU Yujie. Cloning and function prediction of full-length cDNA for cathepsin E derived from medaka (Oryzias latipes).[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 183-191.
[12] LU Yongquan1*, JIA Qing1, TONG Zaikang1, CHEN Jianyang2. Cloning and sequence analysis of three novel chalone synthase genes in Cryptomeria plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 246-252.
[13] CHEN Beibei, JIANG Ming, MIAO Lixiang, LI Wenping. Cloning and expression analysis of a transcription factor gene BoWRKY3 from Brassica oleracea var. italica.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 243-249.
[14] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[15] JIANG Ming,CHEN Xiao-shang,LI Jin-zhi. Cloning, expression and sequence analysis of anthocyanidin synthase gene BcANS in Brassica campestris var. purpurea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 393-398.