Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (2): 280-294    DOI: 10.3785/j.issn.1008-9209.2023.12.221
研究论文     
基因组修饰提高油菜非生物胁迫耐受性及应对气候变化(英文)
黄倩1(),张康妮1,万光龙1,斯燕琼3,周伟军1,2()
1.浙江大学农业与生物技术学院,浙江 杭州 310058
2.农业农村部光谱检测重点实验室,浙江 杭州 310058
3.诸暨市东白缘生态农业科技有限公司,浙江 绍兴 311800
Genome modification improves abiotic stress tolerance in oilseed rape (Brassica napus L.) and responds to climate change
Qian HUANG1(),Muhammad Ahsan FAROOQ1,2(),Kangni ZHANG1,Ahsan AYYAZ1,Guanglong WAN1,Yanqiong SI3,Fakhir HANNAN1,Weijun ZHOU1,2()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
3.Zhuji Dongbaiyuan Ecological Agriculture Technology Co. , Ltd, Shaoxing 311800, Zhejiang, China
 全文: PDF(1051 KB)   HTML
摘要:

当前农业面临多重挑战,其中迫切需要提升产量以满足不断增长的人口需求。盐碱、干旱和极端温度等非生物胁迫是影响植物生长发育和产量的关键因素。油菜作为全球主要的油料作物,是食用植物油、生物柴油和动物饲料的重要来源,研究其遗传变异与生物学特性对于培育能够适应不同环境条件的新品种(基因型)至关重要。本文对近年来国内外油菜抗逆基因的相关研究进展进行了综述,重点总结了新兴分子育种工具和技术,包括全基因组关联分析、基因编辑等在油菜抗逆基因研究中应用的技术,以期为油菜高产抗逆基因的挖掘以及分子育种提供研究基础与技术支撑。

关键词: 油菜遗传变异非生物胁迫株型结构基因组改良    
Abstract:

Current agriculture faces the challenge of significantly increasing production to meet the needs of a large human population. Abiotic stresses, such as salinity, drought, and temperature extremes, severely impact plant growth, development and production. Brassica species, particularly Brassica napus L., are important worldwide sources of edible oil, biodiesel and animal feed. Understanding the genetic variation within the Brassica genus is crucial for developing new varieties (genotypes) adapted to different environmental conditions. This paper reviewed the recent advances on stress-resistant genes in B. napus both domestically and internationally, with a particular focus on emerging molecular breeding tools and technologies, including whole-genome association analysis, gene editing and other technologies. This study aimed to contribute to the exploration of high-yielding and stress-resistant genes in B. napus and to provide a research foundation and technical support for molecular breeding.

Key words: Brassica napus L.    genetic variation    abiotic stress    plant architecture    genome improvement
出版日期: 2024-04-30
CLC:  S565  
通讯作者: 周伟军     E-mail: 11616035@zju.edu.cn;wjzhou@zju.edu.cn;ahsanfarooq143@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄倩
张康妮
万光龙
斯燕琼
周伟军

引用本文:

黄倩,张康妮,万光龙,斯燕琼,周伟军. 基因组修饰提高油菜非生物胁迫耐受性及应对气候变化(英文)[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 280-294.

Qian HUANG,Muhammad Ahsan FAROOQ,Kangni ZHANG,Ahsan AYYAZ,Guanglong WAN,Yanqiong SI,Fakhir HANNAN,Weijun ZHOU. Genome modification improves abiotic stress tolerance in oilseed rape (Brassica napus L.) and responds to climate change. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 280-294.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.12.221        https://www.zjujournals.com/agr/CN/Y2024/V50/I2/280

Study objectiveMarker assisted selectionMethodologyReference
Oleic acid contentSNPsGWAS[7]
Pod number and seed numberSSR, SNPAssociation analysis/QTL mapping[8]
Flowering timeSNPsQTL mapping and transcriptome sequencing[9]
Early senescenceConstruction of B. napus full-length cDNA expression library, plant transformation and selectioniFOX-hunting as a functional genomic tool[10]
Days to flower and seed yieldSSR, AFLPLA[11]
Branch number and branch angleSNP arrayGWAS, LA[12-13]
Number of seeds per siliqueNIL constructMap-based cloning[14]
Seed yield and yield-related traitsSSRQTL analysis and functional gene association in Arabidopsis[15]
Plant architecture and seed yieldBna.AP1.A02 stop codon mutantGene expression analysis[16]
Seed fiber traitsGenetic linkage map 60K SNP arrayQTL analysis[17]
Candidate genes underlying yield-determining traitsSNPs

Genome-wide association and

transcriptome analyses

[18]
Seed oil and seed protein contentsSSR, STS, SRAP, SNPLA[19]
Fatty acid compositionSNPGenome-wide association mapping[20]
Erucic acid content, glucosinolate content, and seed oil contentSNPGWAS[21]
  

Abiotic

stress

Platform/

methodology

Experimental condition/

study objective

CommentReference
SaltQTL mappingSalt toleranceLobed leaf is a common trait, which is related with photosynthesis[67]
GWASPhenotyping of B. napus during seed germination under NaClCandidate genes underlying salt tolerance[74]
Expressed sequence tagSalt and osmotic stressesGrowth and development processes[75]
QTL mappingSalt tolerance and identification of salt-tolerant genesSalt tolerance related gene mapping and cloning[50]
HeatMicroarray analysisHeat stress effects photosynthesis and oil accumulationHeat stress during B. napus seed filling severely impairs yield and oil content[53]
Transcriptomic analysisMechanism of thermosensitive genic male sterility of B. napus under the high temperatureTranscription factors MADS, NFY, HSF, MYB/C and WRKY might play a crucial role in male fertility[76]
GWASHeat stress-tolerance traits in spring-type B. napusA total of five, eight, and seven QTL genes associated with flowering, male sterility, pollen abortion, embryo abortion reducing pollen development[56]
Systematic analysis of Hsf family genes in B. napusDrought and heat stress responsesMultifunctional BnaHsf genes will improve the understanding of plant acclimation response to abiotic stresses[77]
DroughtTranscriptomic basisClassification of the possible drought stress responsive DEGsDEGs in response to drought in B. napus[78]
OverexpressionDrought toleranceTransgenic plants showed a reduced rate of water loss and increased drought tolerance[65]
GWIDrought treatmentVicinal oxygen chelate family in rapeseed (B. napus)[79]
iTRAQLong-term droughtEnergy production, photosynthesis, protein synthesis, stress or defense response, metabolism, signaling, protein folding and degradation[80]

Heavy

metals

Association mappingCd-tolerant QTLsCd-tolerant B. napus that could be utilized in phytore-mediation[67]
High-throughput RNA sequencingIsolation and analysis of putative transporter proteins from B. napusABC genes involved in Cd uptake or transport in B. napus[35]
GWASCd accumulation at the seedling stageCd accumulation and the cloning of candidate Cd accumulation genes, which could be used to help reduce Cd levels in edible plant parts[66]
Genome-wide characterizationAnalysis of metallothinoinein family genesBnaMT3C plays a key role in the response to As3+ stress in B. napus[81]
MicroRNA-mRNAChanges in miRNA and mRNA expression profiles in the roots and shoots of B. napus seedlings under Cd stressCombined miRNA and mRNA profiling revealed miRNAs, genes and pathways involved in Cd response which are potentially critical for adaptation to Cd stress in B. napus[82]
  
  
58 JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. DOI: 10.1111/jipb.12513
doi: 10.1111/jipb.12513
59 LU S P, FADLALLA T, TANG S, et al. Genome-wide analysis of phospholipase D gene family and profiling of phospholipids under abiotic stresses in Brassica napus [J]. Plant & Cell Physiology, 2019, 60(7): 1556-1566. DOI: 10.1093/pcp/pcz071
doi: 10.1093/pcp/pcz071
60 LU S P, BAHN S C, QU G, et al. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus [J]. Plant Biotechnology Journal, 2013, 11(3): 380-389. DOI: 10.1111/pbi.12028
doi: 10.1111/pbi.12028
61 LI N, SHI J Q, WANG X F, et al. A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.)[J]. BMC Plant Biology, 2014, 14: 114. DOI: 10.1186/1471-2229-14-114
doi: 10.1186/1471-2229-14-114
62 FLETCHER R S, MULLEN J L, HEILIGER A, et al. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus [J]. Journal of Experimental Botany, 2015, 66(1): 245-256. DOI: 10.1093/jxb/eru423
doi: 10.1093/jxb/eru423
63 LI H L, YU K D, ZHANG Z L, et al. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L.[J]. Plant Biotechnology Journal, 2024, 22(2): 445-459. DOI: 10.1111/pbi.14197
doi: 10.1111/pbi.14197
64 WANG H D, LIU J J, HUANG J, et al. Mapping and identifying candidate genes enabling cadmium accumulation in Brassica napus revealed by combined BSA-seq and RNA-seq analysis[J]. International Journal of Molecular Sciences, 2023, 24(12): 10163. DOI: 10.3390/ijms241210163
doi: 10.3390/ijms241210163
65 WANG S F, SUN J J, LI S T, et al. Physiological, genomic and transcriptomic comparison of two Brassica napus cultivars with contrasting cadmium tolerance[J]. Plant and Soil, 2019, 441: 71-87. DOI: 10.1007/s11104-019-04083-0
doi: 10.1007/s11104-019-04083-0
66 CHEN L L, WAN H P, QIAN J L, et al. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 2018, 9: 375. DOI: 10.3389/fpls.2018.00375
doi: 10.3389/fpls.2018.00375
67 ZHANG F G, XIAO X, YAN G X, et al. Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation[J]. Environmental and Experimental Botany, 2018, 155: 420-428. DOI: 10.1016/j.envexpbot.2018.07.014
doi: 10.1016/j.envexpbot.2018.07.014
68 ZHANG Y, XU A X, LANG L N, et al. Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L.[J]. Plant Science, 2018, 269: 75-84. DOI: 10.1016/j.plantsci.2018.01.005
doi: 10.1016/j.plantsci.2018.01.005
69 HASSINEN V H, TUOMAINEN M, PERÄNIEMI S, et al. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens [J]. Journal of Experimental Botany, 2009, 60(1): 187-196. DOI: 10.1093/jxb/ern287
doi: 10.1093/jxb/ern287
1 HICKEY L T, HAFEEZ A N, ROBINSON H, et al. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019, 37(7): 744-754. DOI: 10.1038/s41587-019-0152-9
doi: 10.1038/s41587-019-0152-9
2 VANWALLENDAEL A, SOLTANI A, EMERY N C, et al. A molecular view of plant local adaptation: incorporating stress-response networks[J]. Annual Review of Plant Biology, 2019, 70: 559-583. DOI: 10.1146/annurev-arplant-050718-100114
doi: 10.1146/annurev-arplant-050718-100114
3 AFZAL M, ALGHAMDI S S, HABIB UR RAHMAN M, et al. Current status and future possibilities of molecular genetics techniques in Brassica napus [J]. Biotechnology Letters, 2018, 40(3): 479-492. DOI: 10.1007/s10529-018-2510-y
doi: 10.1007/s10529-018-2510-y
4 CHMIELEWSKA A, KOZŁOWSKA M, RACHWAŁ D, et al. Canola/rapeseed protein-nutritional value, functionality and food application: a review[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(22): 3836-3856. DOI: 10.1080/10408398.2020.1809342
doi: 10.1080/10408398.2020.1809342
5 MAILER R J. Oilseeds: overview[M]//WRIGLEY C W, CORKE H, SEETHARAMAN K, et al. Encyclopedia of Food Grains. Amsterdam: Elsevier, 2016: 221-227. DOI: 10.1016/b978-0-12-394437-5.00026-7
doi: 10.1016/b978-0-12-394437-5.00026-7
6 FRIEDT W, TU J X, FU T D. Academic and economic importance of Brassica napus rapeseed[M]//LIU S Y, SNOWDON R, CHALHOUB B. The Brassica napus Genome. Cham: Springer, 2018: 1-20. DOI: 10.1007/978-3-319-43694-4_1
doi: 10.1007/978-3-319-43694-4_1
7 ZHAO Q, WU J, CAI G Q, et al. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus [J]. Plant Biotechnology Journal, 2019, 17(12): 2313-2324. DOI: 10.1111/pbi.13142
doi: 10.1111/pbi.13142
8 SHI J Q, ZHAN J P, YANG Y H, et al. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.)[J]. Scientific Reports, 2015, 5: 14481. DOI: 10.1038/srep14481
doi: 10.1038/srep14481
9 JIAN H J, ZHANG A X, MA J Q, et al. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L.[J]. BMC Genomics, 2019, 20: 21. DOI: 10.1186/s12864-018-5356-8
doi: 10.1186/s12864-018-5356-8
10 LING J, LI R J, NWAFOR C C, et al. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus [J]. Plant Biotechnology Journal, 2018, 16(2): 591-602. DOI: 10.1111/pbi.12799
doi: 10.1111/pbi.12799
11 RAHMAN H, BENNETT R A, KEBEDE B. Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from Brassica oleracea [J]. Molecular Breeding, 2017, 37(1): 5. DOI: 10.1007/s11032-016-0608-2
doi: 10.1007/s11032-016-0608-2
12 HE Y J, WU D M, WEI D Y, et al. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis[J]. Scientific Reports, 2017, 7: 15971. DOI: 10.1038/s41598-017-15976-4
doi: 10.1038/s41598-017-15976-4
13 SHEN Q, JIANG M, LI H, et al. Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity[J]. Plant, Cell & Environment, 2011, 34(5): 752-763. DOI: 10.1111/j.1365-3040.2011.02279.x
doi: 10.1111/j.1365-3040.2011.02279.x
14 LI S P, CHEN L, ZHANG L W, et al. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes[J]. Plant Physiology, 2015, 169(4): 2744-2760. DOI: 10.1104/pp.15.01040
doi: 10.1104/pp.15.01040
15 DING G D, ZHAO Z K, LIAO Y, et al. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus [J]. Annals of Botany, 2012, 109(4): 747-759. DOI: 10.1093/aob/mcr323
doi: 10.1093/aob/mcr323
16 SHAH S, KARUNARATHNA N L, JUNG C, et al. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.)[J]. BMC Plant Biology, 2018, 18: 380. DOI: 10.1186/s12870-018-1606-9
doi: 10.1186/s12870-018-1606-9
17 MIAO L Y, CHAO H B, CHEN L, et al. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus [J]. Theoretical and Applied Genetics, 2019, 132(6): 1761-1775. DOI: 10.1007/s00122-019-03313-4
doi: 10.1007/s00122-019-03313-4
18 LU K, PENG L, ZHANG C, et al. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus [J]. Frontiers in Plant Science, 2017, 8: 206. DOI: 10.3389/fpls.2017.00206
doi: 10.3389/fpls.2017.00206
19 CHAO H B, WANG H, WANG X D, et al. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus [J]. Scientific Reports, 2017, 7: 46295. DOI: 10.1038/srep46295
doi: 10.1038/srep46295
20 QU C M, JIA L D, FU F Y, et al. Erratum to: genome-wide association mapping and identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers[J]. BMC Genomics, 2017, 18: 377. DOI: 10.1186/s12864-017-3772-9
doi: 10.1186/s12864-017-3772-9
21 WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. DOI: 10.1146/annurev-arplant-042817-040422
doi: 10.1146/annurev-arplant-042817-040422
22 LANDRY B S, HUBERT N, ETOH T, et al. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences[J]. Genome, 1991, 34(4): 543-552. DOI:10.1139/g91-084
doi: 10.1139/g91-084
23 CAI D F, XIAO Y J, YANG W, et al. Association mapping of six yield-related traits in rapeseed (Brassica napus L.)[J]. Theoretical and Applied Genetics, 2014, 127(1): 85-96. DOI: 10.1007/s00122-013-2203-9
doi: 10.1007/s00122-013-2203-9
24 WANG X D, WANG H, LONG Y, et al. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.[J]. Theoretical and Applied Genetics, 2015, 128(6): 1175-1192. DOI: 10.1007/s00122-015-2498-9
doi: 10.1007/s00122-015-2498-9
25 HASAN M, FRIEDT W, PONS-KÜHNEMANN J, et al. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus)[J]. Theoretical and Applied Genetics, 2008, 116(8): 1035-1049. DOI: 10.1007/s00122-008-0733-3
doi: 10.1007/s00122-008-0733-3
26 ZHAO Q, WU J, LAN L, et al. Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus [J]. Theoretical and Applied Genetics, 2023, 136(12): 256. DOI: 10.1007/s00122-023-04501-z
doi: 10.1007/s00122-023-04501-z
27 GU J W, CHEN J Y, ZHAO C Q, et al. Mutating BnEOD1s via CRISPR-Cas9 increases the seed size and weight in Brassica napus [J]. Molecular Breeding, 2023, 43(11): 79. DOI: 10.1007/s11032-023-01430-z
doi: 10.1007/s11032-023-01430-z
28 KNOCH D, MEYER R C, HEUERMANN M C, et al. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola[J]. The Plant Journal, 2024, 117(3): 713-728. DOI: 10.1111/tpj.16524
doi: 10.1111/tpj.16524
29 SHEN W H, QIN P, YAN M J, et al. Fine mapping of a silique length- and seed weight-related gene in Brassica napus [J]. Theoretical and Applied Genetics, 2019, 132(11): 2985-2996. DOI: 10.1007/s00122-019-03400-6
doi: 10.1007/s00122-019-03400-6
30 许玲, LIU H, YAN G J,等.油料作物育种的分子工具和技术创新[J].浙江大学学报(农业与生命科学版),2023,49(4):445-453. DOI:10.3785/j.issn.1008-9209.2023.04.181
XU L, LIU H, YAN G J, et al. Molecular tools and technological innovation in oil crop breeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 445-453. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2023.04.181
31 QU C M, ZHU M C, HU R, et al. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus [J]. Nature Communications, 2023, 14: 5194. DOI: 10.1038/s41467-023-40838-1
doi: 10.1038/s41467-023-40838-1
32 LIU J, HAO W J, LIU J, et al. A novel chimeric mito-chondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus)[J]. Molecular Plant, 2019, 12(4): 582-596. DOI: 10.1016/j.molp.2019.01.012
doi: 10.1016/j.molp.2019.01.012
33 HUANG H B, AHMAR S, SAMAD R A, et al. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family[J]. Theoretical and Applied Genetics, 2023, 136(9): 187. DOI: 10.1007/s00122-023-04414-x
doi: 10.1007/s00122-023-04414-x
34 BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system[J]. Plant Physiology, 2014, 166(3): 1292-1297. DOI: 10.1104/pp.114.247577
doi: 10.1104/pp.114.247577
35 ZHANG Z H, ZHOU T, TANG T J, et al. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity[J]. Journal of Experimental Botany, 2019, 70(19): 5437-5455. DOI: 10.1093/jxb/erz295
doi: 10.1093/jxb/erz295
36 REN R, LIU W, YAO M, et al. Regional association and transcriptome analysis revealed candidate genes controlling plant height in Brassica napus [J]. Molecular Breeding, 2022, 42(11): 69. DOI: 10.1007/s11032-022-01337-1
doi: 10.1007/s11032-022-01337-1
37 LI H T, LI J J, SONG J R, et al. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed[J]. New Phytologist, 2019, 222(2): 837-851. DOI: 10.1111/nph.15632
doi: 10.1111/nph.15632
38 ZHENG M, ZHANG L, TANG M, et al. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.)[J]. Plant Biotechnology Journal, 2020, 18(3): 644-654. DOI: 10.1111/pbi.13228
doi: 10.1111/pbi.13228
39 LU K, WEI L J, LI X L, et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement[J]. Nature Communications, 2019, 10: 1154. DOI: 10.1038/s41467-019-09134-9
doi: 10.1038/s41467-019-09134-9
40 DENG C R, LIU H D, YAO Y M, et al. QTL analysis of four yield-related traits for Brassica napus L. in multiple environments[J]. Molecular Breeding, 2019, 39(12): 166. DOI: 10.1007/s11032-019-1067-3
doi: 10.1007/s11032-019-1067-3
41 LI C Y, SHI H S, XU L, et al. Combining transcriptomics and metabolomics to identify key response genes for aluminum toxicity in the root system of Brassica napus L. seedlings[J]. Theoretical and Applied Genetics, 2023, 136(8): 169. DOI: 10.1007/s00122-023-04412-z
doi: 10.1007/s00122-023-04412-z
42 RABOANATAHIRY N, CHAO H B, HOU D L, et al. QTL alignment for seed yield and yield related traits in Brassica napus [J]. Frontiers in Plant Science, 2018, 9: 1127. DOI: 10.3389/fpls.2018.01127
doi: 10.3389/fpls.2018.01127
43 MILLER C, WELLS R, MCKENZIE N, et al. Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size, and crop yields in Brassica napus [J]. The Plant Cell, 2019, 31(10): 2370-2385. DOI: 10.1105/tpc.18.00577
doi: 10.1105/tpc.18.00577
44 YANG S, CHEN J L, DING Y H, et al. Genome-wide investigation and expression profiling of LOR gene family in rapeseed under salinity and ABA stress[J]. Frontiers in Plant Science, 2023, 14: 1197781. DOI: 10.3389/fpls.2023.1197781
doi: 10.3389/fpls.2023.1197781
45 CHAKRABORTY K, BOSE J, SHABALA L, et al. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species[J]. Journal of Experimental Botany, 2016, 67(15): 4611-4625. DOI: 10.1093/jxb/erw236
doi: 10.1093/jxb/erw236
46 陈书冰,许孜书,黄倩,等.甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析[J].浙江大学学报(农业与生命科学版),2023,49(4):484-496. DOI:10.3785/j.issn.1008-9209.2022.09.281
CHEN S B, XU Z S, HUANG Q, et al. Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 484-496. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2022.09.281
47 WU H H. Plant salt tolerance and Na+ sensing and transport[J]. The Crop Journal, 2018, 6(3): 215-225. DOI: 10.1016/j.cj.2018.01.003
doi: 10.1016/j.cj.2018.01.003
48 ZHAO B Y, HU Y F, LI J J, et al. BnaABF2, a bZIP trans-cription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis [J]. Botanical Studies, 2016, 57(1): 12. DOI: 10.1186/s40529-016-0127-9
doi: 10.1186/s40529-016-0127-9
49 YONG H Y, WANG C L, BANCROFT I, et al. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.)[J]. Planta, 2015, 242(1): 313-326. DOI: 10.1007/s00425-015-2310-8
doi: 10.1007/s00425-015-2310-8
50 LANG L N, XU A X, DING J, et al. Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L.[J]. Frontiers in Plant Science, 2017, 8: 1000. DOI: 10.3389/fpls.2017.01000
doi: 10.3389/fpls.2017.01000
51 XU P F, ZHANG W T, WANG X, et al. Multiomics analysis reveals a link between Brassica-specific miR1885 and rapeseed tolerance to low temperature[J]. Plant, Cell & Environment, 2023, 46(11): 3405-3419. DOI: 10.1111/pce.14690
doi: 10.1111/pce.14690
52 LIU Z B, WANG J M, YANG F X, et al. A novel membrane-bound E3 ubiquitin ligase enhances the thermal resistance in plants[J]. Plant Biotechnology Journal, 2014, 12(1): 93-104. DOI: 10.1111/pbi.12120
doi: 10.1111/pbi.12120
53 HUANG R Z, LIU Z H, XING M Q, et al. Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway[J]. Plant & Cell Physiology, 2019, 60(7): 1457-1470. DOI: 10.1093/pcp/pcz052
doi: 10.1093/pcp/pcz052
54 NIU F F, WANG C, YAN J L, et al. Functional charac-terization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death[J]. Plant Molecular Biology, 2016, 92(1/2): 89-104. DOI: 10.1007/s11103-016-0502-7
doi: 10.1007/s11103-016-0502-7
55 HE X, XIE S, XIE P, et al. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus [J]. Environmental and Experimental Botany, 2019, 165: 108-119. DOI: 10.1016/j.envexpbot.2019.05.007
doi: 10.1016/j.envexpbot.2019.05.007
56 RAHAMAN M, MAMIDI S, RAHMAN M. Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions[J]. The Crop Journal, 2018, 6(2): 115-125. DOI: 10.1016/j.cj.2017.08.003
doi: 10.1016/j.cj.2017.08.003
57 HU J, LUO M D, ZHOU X M, et al. RING-type E3 ligase BnaJUL1 ubiquitinates and degrades BnaTBCC1 to regulate drought tolerance in Brassica napus L.[J]. Plant, Cell & Environment, 2024, 47(4): 1023-1040. DOI: 10.1111/pce.14770
doi: 10.1111/pce.14770
70 HUANG S Q, XIANG A L, CHE L L, et al. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress[J]. Plant Biotechnology Journal, 2010, 8(8): 887-899. DOI: 10.1111/j.1467-7652.2010.00517.x
doi: 10.1111/j.1467-7652.2010.00517.x
71 LI N N, XIAO H, SUN J J, et al. Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under Cd stress[J]. Plant and Soil, 2018, 426: 365-381. DOI: 10.1007/s11104-018-3637-2
doi: 10.1007/s11104-018-3637-2
72 ZHANG K N, MASON A S, FAROOQ M A, et al. Challenges and prospects for a potential allohexaploid Brassica crop[J]. Theoretical and Applied Genetics, 2021, 134(9): 2711-2726. DOI: 10.1007/s00122-021-03845-8
doi: 10.1007/s00122-021-03845-8
73 石子建,徐建祥,黄倩,等.优质高产浙大系列油菜新品种特性及耐迟播丰产配套技术[J].分子植物育种,2024,22(1):268-275. DOI:10.13271/j.mpb.022.000268
SHI Z J, XU J X, HUANG Q, et al. New rapeseed varieties of high quality and yield of Zheda series and supporting techniques for late sowing[J]. Molecular Plant Breeding, 2024, 22(1): 268-275. (in Chinese with English abstract)
doi: 10.13271/j.mpb.022.000268
74 WAN H P, CHEN L L, GUO J B, et al. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 2017, 8: 593. DOI: 10.3389/fpls.2017.00593
doi: 10.3389/fpls.2017.00593
75 LUO J L, TANG S H, MEI F L, et al. BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus [J]. Frontiers in Plant Science, 2017, 8: 44. DOI: 10.3389/fpls.2017.00044
doi: 10.3389/fpls.2017.00044
76 TANG X, HAO Y J, LU J X, et al. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement[J]. BMC Genomics, 2019, 20: 644. DOI: 10.1186/s12864-019-6008-3
doi: 10.1186/s12864-019-6008-3
77 ZHU X Y, HUANG C Q, ZHANG L, et al. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses[J]. Frontiers in Plant Science, 2017, 8: 1174. DOI: 10.3389/fpls.2017.01174
doi: 10.3389/fpls.2017.01174
78 WANG P, YANG C L, CHEN H, et al. Transcriptomic basis for drought-resistance in Brassica napus L.[J]. Scientific Reports, 2017, 7: 40532. DOI: 10.1038/srep40532
doi: 10.1038/srep40532
79 LIANG Y, WAN N, CHENG Z, et al. Whole-genome iden-tification and expression pattern of the vicinal oxygen chelate family in rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 2017, 8: 745. DOI: 10.3389/fpls.2017.00745
doi: 10.3389/fpls.2017.00745
80 KOH J, CHEN G, YOO M J, et al. Comparative proteomic analysis of Brassica napus in response to drought stress[J]. Journal of Proteome Research, 2015, 14(8): 3068-3081. DOI: 10.1021/pr501323d
doi: 10.1021/pr501323d
81 PAN Y, ZHU M C, WANG S X, et al. Genome-wide characterization and analysis of metallothionein family genes that function in metal stress tolerance in Brassica napus L.[J]. International Journal of Molecular Sciences, 2018, 19(8): 2181. DOI: 10.3390/ijms19082181
doi: 10.3390/ijms19082181
82 FU Y, MASON A S, ZHANG Y F, et al. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus [J]. BMC Plant Biology, 2019, 19: 570. DOI: 10.1186/s12870-019-2189-9
doi: 10.1186/s12870-019-2189-9
83 孙永祺,陈梦媛,黄倩,等.低空无人机遥感在油料作物表型分析中的应用[J].浙江大学学报(农业与生命科学版),2023,49(4):472-483. DOI:10.3785/j.issn.1008-9209.2023.04.201
SUN Y Q, CHEN M Y, HUANG Q, et al. Application of low-altitude unmanned aerial vehicle remote sensing in the phenotypic analysis of oil crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 472-483. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2023.04.201
84 United States Department of Agriculture (USDA). Deter-mination of Nonregulated Status for Nuseed DHA Canola [M]Washington, DC: USDA, 2018.
85 Office of the Gene Technology Regulator (OGTR). Issue of Licence DIR 155 to Nuseed Pty Ltd for the Commercial Release of GM Canola[EB/OL]. Canberra: OGTR, 2018.
[1] 陈书冰,许孜书,黄倩,张慧,张康妮,段怡,孙月娥,周伟军,许玲. 甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 484-496.
[2] 文雁成,何俊平,蔡东芳,张书芬,朱家成,王建平,曹金华,赵磊,王东国,刘奕孜. 基于全基因组重测序技术的甘蓝型油菜光叶突变体基因定位[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 497-506.
[3] 罗裳,王志远,李长威,蒋娜,韩永亮,荣湘民,杨兰. 过氧化钙缓解冬油菜苗期渍害胁迫的效应研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 516-525.
[4] 徐丽华,苏菲,李军星,余斌,叶十一,杨富文,邓利荣,毛慧敏,袁秀芳. 2016—2020年浙江地区猪圆环病毒2型分子流行病学分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 644-652.
[5] 王怡田,张小敏,姜海益,张延宁,林洋洋,饶秀勤. 基于高光谱成像技术的油菜苗期光照胁迫诊断[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 106-116.
[6] 周认,蔡宇,林恬逸,柴明良. 模拟干旱胁迫下褪黑素和表油菜素内酯对沟叶结缕草长期继代培养愈伤组织再生的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 36-44.
[7] 朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[8] MAODZEKA Antony, 卢凌志, 赵鑫泽, 徐颖, 吴德志, 蒋立希. 外源5-氨基乙酰丙酸对油菜幼苗硫代葡萄糖苷生物合成的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 291-307.
[9] 伍文杰, 吴崇友. 油菜联合收割机的割台参数优化[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 481-489.
[10] 严涛, 玄立杰, 蒋立希. 类黄酮对油菜脂肪酸积累的影响及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 253-258.
[11] 温雪玮,陈泱泱,武斌,胡东维,梁五生. 以防治油菜菌核病为目标的核盘菌乙酰乳酸合酶抑制剂的筛选[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 589-598.
[12] 王昊一,李宇玲,朱乐,蒋立希. 油菜种子休眠性对脂肪酸积累的影响及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 397-403.
[13] 王舒甜,王金平,张金池,岳健敏. 油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 476-482.
[14] 倪西源,黄吉祥,柳寒,潘兵,赵坚义. 应用分子标记辅助选育甘蓝型油菜杂交种的可行性[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 173-182.
[15] 刘于, 王伏林, 刘仁虎. 甘蓝型油菜黄籽突变对含油量和蛋白质含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 37-44.