Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (3): 291-307    DOI: 10.3785/j.issn.1008-9209.2019.08.262
作物栽培与生理     
外源5-氨基乙酰丙酸对油菜幼苗硫代葡萄糖苷生物合成的影响(英文)
MAODZEKA Antony,卢凌志,赵鑫泽,徐颖,吴德志,蒋立希*
浙江大学农业与生物技术学院,浙江省作物种质资源重点实验室,杭州 310058
Effect of exogenous 5-aminolevulinic acid on glucosinolate biosynthesis in rape (Brassica napus L.) seedlings
Antony MAODZEKA(),Lingzhi LU,Xinze ZHAO,Ying XU,Dezhi WU,Lixi JIANG()
Zhejiang Key Laboratory of Crop Gene Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1694 KB)   HTML
摘要:

5-氨基乙酰丙酸(5-aminolevulinic acid, ALA)是一种可以影响植物碳固定和营养物质同化等生理生化过程的植物生长调节剂。本文研究了ALA对幼苗期甘蓝型油菜硫代谢和硫代葡萄糖苷生物合成的影响。用含有0、0.5、1.0、5.0、10.0 mg/L ALA的霍格兰培养液处理油菜幼苗28 d后,分析ALA对其硫醇和硫代葡萄糖苷含量以及相关基因转录组的影响。结果表明:低质量浓度的ALA处理增加了半胱氨酸、硫代葡萄糖苷以及总可溶性硫醇的含量,同时上调了调节硫摄取和代谢相关基因的表达,如BnSULTR1.1BnSULTR2.2BnAPK1。由于硫代谢的加速以及甲硫氨酸的积累,ALA还提高了硫代葡萄糖苷的含量,特别是脂肪族硫代葡萄糖苷的含量。从BnUGT74B1BnUGT74C1基因表达中也可以看出,像脱硫-硫代葡萄糖苷糖基化这样的其他硫代葡萄糖苷的生物合成阶段也因为ALA的作用而加强。高质量浓度的ALA处理,通过造成细胞成分损害的光氧化胁迫而对硫代谢和硫代葡萄糖苷合成产生负调控作用。而中质量浓度的ALA促进了硫的获取和同化,并促进硫代葡萄糖苷的生物合成。

关键词: 5-氨基乙酰丙酸硫代谢硫代葡萄糖苷谷胱甘肽油菜幼苗    
Abstract:

5-aminolevulinic acid (ALA) has been used as a plant growth regulator and can affect physiochemical processes, including carbon fixation and nutrient assimilation. Here, we investigated the effect of ALA on sulfur metabolism and glucosinolate (GSL) biosynthesis in rape (Brassica napus L.) seedlings, which were treated with 0, 0.5, 1.0, 5.0, and 10.0 mg/L ALA supplemented in a Hoagland solution. After 28 d of treatment, the effect of ALA on thiol and GSL contents and transcriptional profile of associated genes was analyzed. Results showed that low ALA concentrations increased cysteine, GSL, and total soluble thiol contents, and upregulated expression of genes such as BnSULTR1.1, BnSULTR2.2,and BnAPK1 that regulate sulfur uptake and metabolism. ALA also increased the GSL content, particularly the aliphatic GSLs, due to the improvement of sulfur metabolism and assimilation to methionine. Other GSLs biosynthesis stages, such as desulfo-GSL glycosylation, were also significantly improved by the ALA applications as indicated by the increased expression of BnUGT74B1 and BnUGT74C1. High ALA concentrations negatively affected sulfur metabolism and GSL synthesis by inflicting photo-oxidative stress that damaged cellular components. Moderate ALA concentrations promoted sulfur acquisition, assimilation, and GSL biosynthesis.

Key words: 5-aminolevulinic acid    sulfur metabolism    glucosinolate    glutathione    rape seedlingCLC number S 565.4 Document code A
出版日期: 2020-06-25
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
MAODZEKA Antony
卢凌志
赵鑫泽
徐颖
吴德志
蒋立希

引用本文:

MAODZEKA Antony, 卢凌志, 赵鑫泽, 徐颖, 吴德志, 蒋立希. 外源5-氨基乙酰丙酸对油菜幼苗硫代葡萄糖苷生物合成的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 291-307.

Antony MAODZEKA, Lingzhi LU, Xinze ZHAO, Ying XU, Dezhi WU, Lixi JIANG. Effect of exogenous 5-aminolevulinic acid on glucosinolate biosynthesis in rape (Brassica napus L.) seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 291-307.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.08.262        http://www.zjujournals.com/agr/CN/Y2020/V46/I3/291

Primer name (target gene)Sense sequence (5′→3′)Antisense sequence (5′→3′)
BnSULTR1.1GTGGCGGTGGTGTCTCTTCTTCAAGTGGCGGTGAAGGCAAGAC
BnSULTR2.2GCTGCGAGACGGTGGTATCAAGCCAGTATTGCGGTCGGTGTAA
BnATPS1GGAGGATGAAGCAGCACGAGAAGCACTTCGGTTGGACCAGCATA
BnAPSK1TCGTAGAGTCGGAGAGGTTGCTTGGTGGCTCGTAAGGGTCATCA
BnSAT1TCAGTCATGTTGCCTCGGTCAGTGTTGTGATGGGTGCTCGTGAA
BnGSH1TGACAAGGACCGCACAGGAATGGGACCTCCATCAGCACCTCTCA
BnGSTF11TCTTCGTCAGCCGTTTGGTCAACCGTTCCTTGGTCCGCATACTT
BnSAT1TCAGTCATGTTGCCTCGGTCAGTGTTGTGATGGGTGCTCGTGAA
BnMS1CAGCACCTTGGAGGCACTTGAGGCAGCAGCGTTGGCAGAGAA
BnSDI1TGGTGGAGCCAGACGCTAACAATCTCAGCATCTCGCCGAAGTG
BnSLIM1ACGCTGAGAGGAGGAGAACTGTTGTGAAGTGGCTGCTGGTTGTT
BnMAM1CGGCAGGTCGGAGAAGGAGTTTCCAGCGATTGCGTTAGCGGTAG
BnCYP79B2GCGAGACACAGGTGGCTTCATATATCCTCTGCGGTCGGTCCA
BnCYP79A2GACTCAAGCAGTGGCGTGATGGTCGTCCGACAAGGCAGGATTCC
BnCYP79F1GCGTCACCTCGAAGGAGATGGAAGCGTGGCTCAACGGACAAGA
BnCYP83A1GAGGAGGAGGCTAGGACGATGAAAGCCGTGAGACCTGTCCAATC
BnMYB28TTGCGGCTAAGGTCACTTCTGTTCGTTCTCCTCGTTGTGGTCAT
BnMYB34CCTCCACGCTGCTCAACCAACGTCAACCTCAGGCGAGTCTT
BnMYB51GCTACATCGTCTCCGTCCACATGTCGTTCACGTCCTCCTCAAGA
BnUGT74C1ACCGTGAACCGTACACCTCTGATGCCCGATAACTTCTGCCTGGA
BnUGT74B1TGACTCACTGCGGTTGGAACTCACCTCACCACCTCATCGCTCTT
BnSUR1CCTTGCTTCCGCACCTGTATCGCAGTAAGATGTCGTCCGCCGTT
BnSOT18ACCAAGACCGAGCCGTCAGAATTCCACCAGTGACCACCGTACTC
BnTGG2TCATGCCGCTGTGGTCAATCTTCCGCAACAAGTCTGGCTTCTG
BnPAL1GGTGTGAAGGCGAGCAGTGATTTCGTGGCGGAGTGTGGTAGT
BnACTIN7CCAGGAATCGCTGACCGTATGAACACTCACCACCACGAACAAGA
  
  
  
  

ALA

treatment/(mg/L)

Aliphatic GSLsTotalIndolic GSLsTotal

Aromatic

GSLs

Total
GBPROEPIGALGNLGNAGBNGBS1-MeGBS4-MeGBSGNT
01.88c5.31b1.23c1.43a2.31c0.25b7.54b19.95bc0.93a0.53a1.26a2.72a1.38b24.05b
0.53.19a6.51a1.64ab1.39a2.58bc0.61a9.84a25.76a1.03a0.39b0.69b2.11b1.62ab29.49a
1.03.16a5.47b1.51bc1.21ab3.28a0.64a10.01a25.28a0.98a0.35b0.65b1.98b1.71a28.97a
5.02.13bc4.61c1.89a0.94b2.75b0.28b7.66b20.26b0.24b0.18c0.09c0.51c0.73c21.50bc
10.02.54b3.73d1.25c0.86b1.82d0.23b7.25b17.69c0.14b0.05d0.08c0.27c0.79c18.75c
  
  
  
  
  
  
1 HOTTA Y, TANAKA T, TAKAOKA H, et al. New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Bioscience, Biotechnology, and Biochemistry, 1997,61(12):2025-2028. DOI:10.1271/bbb.61.2025
doi: 10.1271/bbb.61.2025
2 CHEN G, FAN P S, FENG W M, et al. Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russian Journal of Plant Physiology, 2017,64(1):116-123. DOI:10.1134/S1021443717010046
doi: 10.1134/S1021443717010046
3 ZHANG W F, ZHANG F, RAZIUDDIN R, et al. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. Journal of Plant Growth Regulation, 2008,27:159-169. DOI:10.1007/s00344-008-9042-y
doi: 10.1007/s00344-008-9042-y
4 TIAN T, ALI B, QIN Y B, et al. Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. BioMed Research International, 2014,2014:530642. DOI:10.1155/2014/530642
doi: 10.1155/2014/530642
5 FU J J, CHU X T, SUN Y F, et al. Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress. Biologia Plantarum, 2016,60(3):585-594. DOI:10.1007/s10535-016-0635-1
doi: 10.1007/s10535-016-0635-1
6 MARUYAMA-NAKASHITA A, HIRAI M Y, FUNADA S. Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana. Soil Science and Plant Nutrition, 2010,56(2):281-288. DOI:10.1111/j.1747-0765.2010.00458.x
doi: 10.1111/j.1747-0765.2010.00458.x
7 FOYER C H, THEODOULOU F L, DELROT S. The functions of inter- and intracellular-glutathione transport systems in plants. Trends in Plant Science, 2001,6(10):486-492. DOI:10.1016/s1360-1385(01)02086-6
doi: 10.1016/s1360-1385(01)02086-6
8 FALK K L, TOKUHISA J G, GERSHENZON J. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biology, 2007,9:573-581. DOI:10.1055/s-2007-965431
doi: 10.1055/s-2007-965431
9 BORPATRAGOHAIN P, ROSE T J, KING G J. Fire and brimstone: molecular interactions between sulfur and glucosinolate biosynthesis in model and crop Brassicaceae. Frontiers in Plant Science, 2016,7:1735. DOI:10.3389/fpls.2016.01735
doi: 10.3389/fpls.2016
10 S?NDERBY I E, GEU-FLORES F, HALKIER B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science, 2010,15(5):283-290. DOI:10.1016/j.tplants.2010.02.005
doi: 10.1016/j.tplants.2010.02.005
11 HALKIER B A, GERSHENZON J. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 2006,57:303-333. DOI:10.1146/annurev.arplant.57.032905.105228
doi: 10.1146/annurev.arplant.57.032905.105228
12 PI?LEWSKA-BEDNAREK M, NAKANO R T, HIRUMA K, et al. Glutathione transferase U13 functions in pathogen-triggered glucosinolate metabolism. Plant Physiology, 2018,176:538-551. DOI:10.1104/pp.17.01455
doi: 10.1104/pp.17.01455
13 BANERJEE A, RAI A N, PENNA S, et al. Aliphatic glucosinolate synthesis and gene expression changes in gamma-irradiated cabbage. Food Chemistry, 2016,209:99-103. DOI:10.1016/j.foodchem.2016.04.022
doi: 10.1016/j.foodchem.2016.04.022
14 GUO R F, SHEN W S, QIAN H M, et al. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. Journal of Experimental Botany, 2013,64(18):5707-5719. DOI:10.1093/jxb/ert348
doi: 10.1093/jxb/ert348
15 MIAO H Y, WEI J, ZHAO Y T, et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. Journal of Experimental Botany, 2013,64(4):1097-1109. DOI:10.1093/jxb/ers399
doi: 10.1093/jxb/ers399
16 OMIROU M D, PAPADOPOULOU K K, PAPASTYLIANOU I, et al. Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. Journal of Agricultural and Food Chemistry, 2009,57(20):9408-9417. DOI:10.1021/jf901440n
doi: 10.1021/jf901440n
17 JIANG Y F, LI J L, CALDWELL C D. Glucosinolate content of camelina genotypes as affected by applied nitrogen and sulphur. Crop Science, 2016,56(6):3250. DOI:10.2135/cropsci2016.01.0018
doi: 10.2135/cropsci2016.01.0018
18 MIKKELSEN M D, NAUR P, HALKIER B A. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. The Plant Journal, 2004,37(5):770-777. DOI:10.1111/j.1365-313X.2004.02002.x
doi: 10.1111/j.1365-313X.2004.02002.x
19 TAKAHASHI H, KOPRIVA S, GIORDANO M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 2011,62:157-184. DOI:10.1146/annurev-arplant-042110-103921
doi: 10.1146/annurev-arplant-042110-103921
20 BONES A M, VISVALINGAM S, THANGSTAD O P. Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta, 1994,193(4):558-566.
21 WAWRZY?SKA A, SIRKO L, HAWKESFORD M J, et al. Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyltransferase. Plant Science, 2002,162(4):589-597. DOI: 10.1016/s0168-9452(01)00598-2
doi: 10.1016/s0168-9452(01)00598-2
22 MINOCHA R, THANGAVEL P, DHANKHER O P, et al. Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. Journal of Chromatography A, 2008,1207(1/2):72-83. DOI:10.1016/j.chroma.2008.08.023
doi: 10.1016/j.chroma.2008.08.023
23 BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72:248-254.
24 SAITO K, KUROSAWA M, TATSUGUCHI K, et al. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine (thiol)-iyase]. Plant Physiology, 1994,106(3):887-895.
25 GAITONDE M K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 1967,104(2):627-633.
26 BOOTH J, BOYLAND E, SIMS P. An enzyme from rat liver catalysing conjugations with glutathione. The Biochemical Journal, 1961,79(3):516-524.
27 ISLAM M R, CHOWDHURY A K, RAHMAN M M, et al. Comparative investigation of glutathione S-transferase (GST) in different crops and purification of high active GSTs from onion (Allium cepa L.). Journal of Plant Sciences, 2015,3(3):162-170. DOI:10.11648/j.jps.20150303.17
doi: 10.11648/j.jps.20150303.17
28 KLIEBENSTEIN D J, KROYMANN J, BROWN P D, et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology, 2001,126(2):811-825. DOI:10.1104/pp.126.2.811
doi: 10.1104/pp.126.2.811
29 BROWN P D, TOKUHISA J G, REICHELT M. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003,62(3):471-481. DOI:10.1016/S0031-9422(02)00549-6
doi: 10.1016/S0031-9422(02)00549-6
30 BUROW M, MüLLER R, GERSHENZON J, et al. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. Journal of Chemical Ecology, 2006,32(11):2333-2349. DOI:10.1007/s10886-006-9149-1
doi: 10.1007/s10886-006-9149-1
31 GUO L P, YANG R Q, WANG Z Y, et al. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. Journal of Functional Foods, 2014,9:70-77. DOI:10.1016/j.jff.2014.04.015
doi: 10.1016/j.jff.2014.04.015
32 BEAUDOINEAGAN L D, THORPE T A. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 1985,78(3):438-441.
33 GANAPATHY G, KEERTHI D, NAIR R A, et al. Correlation of phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) activities to phenolics and curcuminoid content in ginger and its wild congener, Zingiber zerumbet following Pythium myriotylum infection. European Journal of Plant Pathology, 2016,145(4):777-785. DOI:10.1007/s10658-016-0865-2
doi: 10.1007/s10658-016-0865-2
34 TRIPATHY B C, CHAKRABORTY N. 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiology, 1991,96(3):761-767.
35 CHAKRABORTY N, TRIPATHY B C. Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiology, 1992,98(1):7-11.
36 CARTEA M E, FRANCISCO M, SOENGAS P, et al. Phenolic compounds in Brassica vegetables. Molecules, 2011,16(1):251-280. DOI:10.3390/molecules16010251
doi: 10.3390/molecules16010251
37 HIRAI M Y, KLEIN M, FUJIKAWA Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. Journal of Biological Chemistry, 2005,280(27):25590-25595. DOI:10.1074/jbc.M502332200
doi: 10.1074/jbc.M502332200
38 CHEN X J, ZHU Z J, NI X L, et al. Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. chinensis. Agricultural Sciences in China, 2006,5(8):603-608. DOI:10.1016/s1671-2927(06)60099-0
doi: 10.1016/s1671-2927(06)60099-0
39 LJUNG K, HULL A K, CELENZA J L, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell, 2005,17(4):1090-1104. DOI:10.1105/tpc.104.029272
doi: 10.1105/tpc.104.029272
40 ZHAO Y D, HULL A K, GUPTA N R, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development, 2002,16(23):3100-3112. DOI:10.1101/gad.1035402
doi: 10.1101/gad.1035402
41 NIU K J, MA H L. The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environmental and Experimental Botany, 2018,155:260-271. DOI:10.2753/REE1540-496X440306
doi: 10.2753/REE
[1] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[2] 刘媛,王妮娅,张雯,余佳,魏虹. 镉胁迫对秋华柳植物螯合肽含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 298-306.
[3] 杨卫东, 李廷强, 丁哲利, 杨肖娥*. 旱柳幼苗抗坏血酸谷胱甘肽循环及谷胱甘肽代谢对镉胁迫的响应[J]. 浙江大学学报(农业与生命科学版), 2014, 40(5): 551-558.
[4] 晁岳恩  张敏  卢玲丽  冯英  杨肖娥. 谷胱甘肽在东南景天Zn/Cd超积累过程中的作用[J]. 浙江大学学报(农业与生命科学版), 2007, 33(6): 597-601.
[5] 胥保华  胡彩虹  夏枚生. 纳米硒对肉鸡肝脏谷胱甘肽过氧化物酶和脱碘酶Ⅰ活性的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 633-637.
[6] 贾秀英  董爱华. Cd、Cr(Ⅵ)及复合污染对鲫鱼组织脂质过氧化的影响[J]. 浙江大学学报(农业与生命科学版), 2003, 29(3): 325-328.
[7] 宋凤鸣  葛秀春  郑重. 枯萎病菌侵染后棉苗体内谷胱甘肽含量的变化及其与抗病性的关系[J]. 浙江大学学报(农业与生命科学版), 2001, 27(6): 615-618.
[8] 吕顺霖 顾国达 丁春阳. 萘胺类化合物对氟中毒家蚕幼虫血淋巴中GSH-Px活性的影响[J]. 浙江大学学报(农业与生命科学版), 2000, 26(5): 543-546.