Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 25-34    DOI: 10.3785/j.issn.1008-9209.2023.03.231
综述     
枸杞植物化学成分调节肠道菌群及相关生理功能的研究进展
毕冉冉(),赵圆,孙玉敬()
浙江工业大学食品科学与工程学院,浙江 杭州 310014
Research advances on regulating intestinal flora and their physiological functions by phytochemicals of goji berry
Ranran BI(),Yuan ZHAO,Yujing SUN()
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
 全文: PDF(923 KB)   HTML
摘要:

枸杞含有多种营养和活性组分,具有一定的食用和药用价值。过去的研究发现,枸杞提取物具有调节免疫、抗肿瘤、抗癌等多种生物活性。最新的研究发现枸杞及其提取物还具有肠道菌群调节功能。本文对宁夏枸杞(红枸杞)和黑果枸杞果实中的枸杞多糖、花色苷、甜菜碱、酚酸、黄酮类化合物、类胡萝卜素等植物化学成分进行了介绍,详述了枸杞全果及其提取物对肠道菌群及相关生理功能的影响,并对未来的研究方向进行了展望。

关键词: 宁夏枸杞(红枸杞)黑果枸杞植物化学成分肠道菌群    
Abstract:

Goji berry contains several nutrients and active ingredients, with certain edible and medicinal value. The past studies have found that goji berry extracts have a variety of biological activities such as immune regulation and antitumor and anticancer activities. Recent research has shown that goji berry and its extracts can also regulate the intestinal flora. This paper reviewed the phytochemicals such as Lycium barbarum polysaccharides, anthocyanins, betaines, phenolic acids, flavonoids, and carotenoids in the fruits of L. barbarum and L. ruthenicum Murray, and outlined the effects of the whole fruit of goji berry and its extracts on the intestinal flora and their physiological functions. This paper provides prospects for future research.

Key words: Lycium barbarum    Lycium ruthenicum Murray    phytochemical    intestinal flora
收稿日期: 2023-03-23 出版日期: 2024-03-01
CLC:  TS201  
基金资助: 国家自然科学基金面上项目(31771982)
通讯作者: 孙玉敬     E-mail: biranrann@163.com;yjsun01@zjut.edu.cn
作者简介: 毕冉冉(https://orcid.org/0000-0001-7304-5961),E-mail:biranrann@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毕冉冉
赵圆
孙玉敬

引用本文:

毕冉冉,赵圆,孙玉敬. 枸杞植物化学成分调节肠道菌群及相关生理功能的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 25-34.

Ranran BI,Yuan ZHAO,Yujing SUN. Research advances on regulating intestinal flora and their physiological functions by phytochemicals of goji berry. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 25-34.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.231        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/25

19 Aikeshan•Wulamu, TAN Y Y, Gulibahaer•Kawuli. Study on the lipid-lowering activity of total flavonoids in Lycium ruthenicum Murr.[J]. Journal of Xinjiang Medical University, 2019, 42(8): 1063-1067. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-5551.2019.08.022
20 李越鲲,梁晓婕,王亚军,等.不同种质黄果枸杞黄酮组分差异性[J].食品工业,2020,41(9):292-296.
LI Y K, LIANG X J, WANG Y J, et al. The difference of flavonoids in different yellow wolfberry germplasms[J]. The Food Industry, 2020, 41(9): 292-296. (in Chinese with English abstract)
21 ISLAM T, YU X M, BADWAL T S, et al. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum)[J]. Chemistry Central Journal, 2017, 11(1): 59. DOI: 10.1186/s13065-017-0287-z
doi: 10.1186/s13065-017-0287-z
22 LIU J F, MENG J, DU J H, et al. Preparative separation of flavonoids from Goji berries by mixed-mode macroporous adsorption resins and effect on Aβ-expressing and anti-aging genes[J]. Molecules, 2020, 25(15): 3511. DOI: 10.3390/molecules25153511
doi: 10.3390/molecules25153511
23 郑覃.黑果枸杞花色苷的提取、纯化及活性组分研究[D].天津:天津商业大学,2018.
ZHENG T. Study on extraction, purification and active components of anthocyanin in Lycium Ruthenicum Murr.[D]. Tianjin: Tianjin University of Commerce, 2018. (in Chinese with English abstract)
24 JIA Q Q, DONG Q X, SANG Q N, et al. Rapid qualitative and quantitative analyses of anthocyanin composition in berries from the Tibetan Plateau with UPLC-quadruple-Orbitrap MS and their antioxidant activities[J]. European Journal of Mass Spectrometry, 2020, 26(4): 301-308. DOI: 10.1177/1469066720926435
doi: 10.1177/1469066720926435
25 WANG Z C, YAN Y Z, NISAR T, et al. Comparison and multivariate statistical analysis of anthocyanin composition in Lycium ruthenicum Murray from different regions to trace geographical origins: the case of China[J]. Food Chemistry, 2018, 246: 233-241. DOI: 10.1016/j.foodchem.2017.11.030
doi: 10.1016/j.foodchem.2017.11.030
26 楼舒婷.黑果枸杞的活性成分和挥发性组分研究[D].杭州:浙江大学,2015.
LOU S T. Research on the active ingredient and volatile components of Lycium ruthenicum Murr.[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
27 陈新晶.黑果枸杞的质量标准研究[D].北京:北京中医药大学,2018.
1 ULBRICHT C, BRYAN J K, COSTA D, et al. An evidence-based systematic review of goji (Lycium spp.) by the Natural Standard Research Collaboration[J]. Journal of Dietary Supple-ments, 2015, 12(2): 184-240. DOI: 10.3109/19390211.2014.904128
doi: 10.3109/19390211.2014.904128
2 刘峰,李甜甜.《中国枸杞产业蓝皮书(2022)》发布[EB/OL].(2022-06-23)[2023-02-11]. . DOI:10.4236/chnstd.2022.112006
doi: 10.4236/chnstd.2022.112006
27 CHEN X J. Establishment of quality evaluation criteria for Lycium ruthenicum Murr.[D]. Beijing: Beijing University of Chinese Medicine, 2018. (in Chinese with English abstract)
28 史蓉,李婷婷,周丽,等.甘肃枸杞功能性物质及其功效研究综述[J].甘肃农业科技,2019(9):81-86. DOI:10.3969/j.issn.1001-1463.2019.09.018
SHI R, LI T T, ZHOU L, et al. Review on functional substances of Lycium barbarum in Gansu and its efficacys[J]. Gansu Agricultural Science and Technology, 2019(9): 81-86. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-1463.2019.09.018
29 WANG C, MA X L, HUI Z, et al. Glycine betaine improves thylakoid membrane function of tobacco leaves under low-temperature stress[J]. Photosynthetica, 2008, 46(3): 400-409. DOI: 10.1007/s11099-008-0072-2
doi: 10.1007/s11099-008-0072-2
30 HALLE I, JEROCH H. The protein turnover of different leghorn hybrids[J]. Archiv für Tierernährung, 1993, 43(4): 319-329.
31 黄丽,於洪建,吴巍.枸杞中类胡萝卜素的研究进展[J].食品研究与开发,2012,33(5):233-236. DOI:10.3969/j.issn.1005-6521.2012.05.068
HUANG L, YU H J, WU W. The studying progress of carotenoids in the medlar[J]. Food Research and Development, 2012, 33(5): 233-236. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-6521.2012.05.068
32 仲秋冬.黄果枸杞成分分析、黄酮分离纯化及体外活性研究[D].南京:南京农业大学,2020.
ZHONG Q D. Composition analysis, flavonoids isolation and purification and in vitro activity of Lycium barbarum L. var. auranticarpum K.F.Ching[D]. Nanjing: Nanjing Agricul-tural University, 2020. (in Chinese with English abstract)
33 周慧吉,彭博,李廷钊,等.枸杞子中玉米黄素双棕榈酸酯及枸杞酸的测定[J].食品工业科技,2021,42(12):294-299. DOI:10.13386/j.issn1002-0306.2020090069
ZHOU H J, PENG B, LI T Z, et al. Determination of zeaxanthin dipalmitate and 2-O-(β-D-glucopyranosyl) ascorbic acid in fruit of Lycium barbarum L.[J]. Science and Technology of Food Industry, 2021, 42(12): 294-299. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2020090069
34 YOSSA NZEUWA I B, GUO B F, ZHANG T, et al. Com-parative metabolic profiling of Lycium fruits (Lycium barbarum and Lycium chinense) from different areas in China and from Nepal[J]. Journal of Food Quality, 2019, 2019: 4396027. DOI: 10.1155/2019/4396027
doi: 10.1155/2019/4396027
35 李赫,陈敏,马文平,等.不同成熟期枸杞中类胡萝卜素含量的变化规律[J].中国农业科学,2006,39(3):599-605. DOI:10.3321/j.issn:0578-1752.2006.03.024
LI H, CHEN M, MA W P, et al. Law of changes of carotenoids contents in fructus lycii of Chinese wolfberry (Lycium barbarum L.) at different mature periods[J]. Scientia Agricultura Sinica, 2006, 39(3): 599-605. (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2006.03.024
36 INBARAJ B S, LU H, HUNG C F, et al. Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS[J]. Journal of Pharma-ceutical and Biomedical Analysis, 2008, 47(4/5): 812-818. DOI: 10.1016/j.jpba.2008.04.001
doi: 10.1016/j.jpba.2008.04.001
37 HO J T K, CHAN G C F, LI J C B. Systemic effects of gut microbiota and its relationship with disease and modulation[J]. BMC Immunology, 2015, 16: 21. DOI: 10.1186/s12865-015-0083-2
doi: 10.1186/s12865-015-0083-2
38 CHEN K, SHEN Z W, GU W J, et al. Prevalence of obesity and associated complications in China: a cross-sectional, real-world study in 15.8 million adults[J]. Diabetes, Obesity & Metabolism, 2023, 25(11): 3390-3399. DOI: 10.1111/dom.15238
doi: 10.1111/dom.15238
39 YANG M, YIN Y X, WANG F, et al. Supplementation with Lycium barbarum polysaccharides reduce obesity in high-fat diet-fed mice by modulation of gut microbiota[J]. Frontiers in Microbiology, 2021, 12: 719967. DOI: 10.3389/fmicb.2021.719967
doi: 10.3389/fmicb.2021.719967
40 CREMONINI E, DAVERI E, MASTALOUDIS A, et al. Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis[J]. Redox Biology, 2019, 26: 101269. DOI: 10.1016/j.redox.2019.101269
doi: 10.1016/j.redox.2019.101269
41 LIU P Y, ZHOU W T, XU W Q, et al. The main anthocyanin monomer from Lycium ruthenicum Murray fruit mediates obesity via modulating the gut microbiota and improving the intestinal barrier[J]. Foods, 2022, 11(1): 98. DOI: 10.3390/foods11010098
doi: 10.3390/foods11010098
42 LI N, LIU X, ZHANG J, et al. Preventive effects of anthocyanins from Lycium ruthenicum Murray in high-fat diet-induced obese mice are related to the regulation of intestinal microbiota and inhibition of pancreatic lipase activity[J]. Molecules, 2022, 27(7): 2141-2159. DOI: 10.3390/molecules27072141
doi: 10.3390/molecules27072141
43 XIA H, ZHOU B J, SUI J, et al. Lycium barbarum polysac-charide regulates the lipid metabolism and alters gut microbiota in high-fat diet induced obese mice[J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12093. DOI: 10.3390/ijerph191912093
doi: 10.3390/ijerph191912093
44 LIAO J L, GUO J, NIU Y H, et al. Flavonoids from Lycium barbarum leaves attenuate obesity through modulating glycolipid levels, oxidative stress, and gut bacterial com-position in high-fat diet-fed mice[J]. Frontiers in Nutrition, 2022, 9: 972794. DOI: 10.3389/fnut.2022.972794
doi: 10.3389/fnut.2022.972794
45 陈茜,薛勇,宋晓峰,等.糖尿病及糖尿病心血管并发症患者肠道菌群的特征[J].微生物学报,2019,59(9):1660-1673. DOI:10.13343/j.cnki.wsxb.20190082
CHEN X, XUE Y, SONG X F, et al. Gut microbiota in diabetic patients and diabetic patients with cardiovascular complications[J]. Acta Microbiologica Sinica, 2019, 59(9): 1660-1673. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.20190082
46 马巧灵,张发,刘朝芹,等.2型糖尿病肠道菌群研究进展[J].中国微生态学杂志,2018,30(11):1361-1364. DOI:10.13381/j.cnki.cjm.201811029
MA Q L, ZHANG F, LIU Z Q, et al. Intestinal flora in type 2 diabetes: research progress[J]. Chinese Journal of Microecology, 2018, 30(11): 1361-1364. (in Chinese with English abstract)
doi: 10.13381/j.cnki.cjm.201811029
47 LIU H, ZHANG Z, LI J P, et al. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis[J]. Food & Function, 2022, 13(9): 5416-5429. DOI: 10.1039/d1fo02667d
doi: 10.1039/d1fo02667d
48 LU H X, LIU P, ZHANG X X, et al. Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats[J]. Journal of Functional Foods, 2021, 79: 104407. DOI: 10.1016/j.jff.2021.104407
doi: 10.1016/j.jff.2021.104407
49 邬军文,张敏,姚昀,等.多糖、肠道微生物与免疫之间的相互影响[J].食品工业科技,2017,38(22):315-320. DOI:10.13386/j.issn1002-0306.2017.22.061
WU J W, ZHANG M, YAO Y, et al. Interaction of poly-saccharides, gut microbiota and immunity[J]. Science and Technology of Food Industry, 2017, 38(22): 315-320. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2017.22.061
50 LEVY M, BLACHER E, Microbiome ELINAV E., meta-bolites and host immunity [J]. Current Opinion in Microbiology, 2017, 35: 8-15. DOI: 10.1016/j.mib.2016.10.003
doi: 10.1016/j.mib.2016.10.003
51 胡彤,庞智.炎症性肠病与肠道微生态[J].医学新知,2022,32(4):296-302. DOI:10.12173/j.issn.1004-5511.202203027
HU T, PANG Z. Inflammatory bowel disease and intestinal microecology[J]. New Medicine, 2022, 32(4): 296-302. (in Chinese with English abstract)
doi: 10.12173/j.issn.1004-5511.202203027
52 OTT S J, MUSFELDT M, WENDEROTH D F, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease[J]. Gut, 2004, 53(5): 685-693. DOI: 10.1136/gut.2003.025403
doi: 10.1136/gut.2003.025403
53 YAN J B, LUO M M, CHEN Z Y, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. Journal of Immunology Research, 2020, 2020: 8813558. DOI: 10.1155/2020/8813558
doi: 10.1155/2020/8813558
54 PENG Y J, YAN Y M, WAN P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radical Biology and Medicine, 2019, 136: 96-108. DOI: 10.1016/j.freeradbiomed.2019.04.005
doi: 10.1016/j.freeradbiomed.2019.04.005
55 PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912. DOI: 10.1038/s41586-022-04480-z
doi: 10.1038/s41586-022-04480-z
56 HUANG Y C, ZHENG Y H, YANG F M, et al. Lycium barbarum glycopeptide prevents the development and pro-gression of acute colitis by regulating the composition and diversity of the gut microbiota in mice[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 921075. DOI: 10.3389/fcimb.2022.921075
doi: 10.3389/fcimb.2022.921075
57 KANG Y F, YANG G, ZHANG S M, et al. Goji berry modulates gut microbiota and alleviates colitis in IL-10-deficient mice[J]. Molecular Nutrition & Food Research, 2018, 62(22): 1800535. DOI: 10.1002/mnfr.201800535
doi: 10.1002/mnfr.201800535
58 SUN X F, ZHU M J. Butyrate inhibits indices of colorectal carcinogenesis via enhancing α-ketoglutarate-dependent DNA demethylation of mismatch repair genes[J]. Molecular Nutrition & Food Research, 2018, 62(10): 1700932. DOI: 10.1002/mnfr.201700932
doi: 10.1002/mnfr.201700932
59 罗青,禄璐,闫亚美,等.枸杞粉及其多糖对环磷酰胺致免疫低下小鼠免疫及肠道菌群的调节作用[J].食品科学,2022,43(11):137-148. DOI:10.7506/spkx1002-6630-20210402-027
LUO Q, LU L, YAN Y M, et al. Immunomodulatory effects of spray dried powder of Goji (Lycium barbarum L.) and Goji polysaccharides on immunosuppressive mice induced by cyclophosphamide and their regulation on gut microbiota[J]. Food Science, 2022, 43(11): 137-148. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20210402-027
60 ZHU W, ZHOU S X, LIU J H, et al. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide[J]. Biomedicine & Pharmacotherapy, 2020, 121: 109591. DOI: 10.1016/j.biopha.2019.109591
doi: 10.1016/j.biopha.2019.109591
61 CUI F, SHI C L, ZHOU X J, et al. Lycium barbarum poly-saccharide extracted from Lycium barbarum leaves ameliorates asthma in mice by reducing inflammation and modulating gut microbiota[J]. Journal of Medicinal Food, 2020, 23(7): 699-710. DOI: 10.1089/jmf.2019.4544
doi: 10.1089/jmf.2019.4544
62 LAI W J, WANG C Y, LAI R F, et al. Lycium barbarum polysaccharide modulates gut microbiota to alleviate rheu-matoid arthritis in a rat model[J]. npj Science of Food, 2022, 6: 34. DOI: 10.1038/s41538-022-00149-z
doi: 10.1038/s41538-022-00149-z
63 李慧臻,李柏良,李子叶,等.乳酸杆菌抗肿瘤作用的研究进展[J].食品工业科技,2019, 40(2):336-341. DOI:10.13386/j.issn1002-0306.2019.02.059
LI H Z, LI B L, LI Z Y, et al. Research progress of anti-tumor effect of Lactobacillus [J]. Science and Technology of Food Industry, 2019, 40(2): 336-341. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2019.02.059
64 邓向亮,林倩倩,罗霞,等.枸杞多糖对H22肝癌小鼠肠道大肠杆菌、双歧杆菌和乳酸杆菌的影响[J].食品科技,2019,44(12):247-252. DOI:10.13684/j.cnki.spkj.2019.12.042
DENG X L, LIN Q Q, LUO X, et al. Effects of Lycium barbarum polysaccharide on intestinal E. coli, Bifidobacteria and Lactobacillus in H22 hepatocellular carcinoma mice[J]. Food Science and Technology, 2019, 44(12): 247-252. (in Chinese with English abstract)
doi: 10.13684/j.cnki.spkj.2019.12.042
65 TIAN B M, LIU M Y, AN W, et al. Lycium barbarum relieves gut microbiota dysbiosis and improves colonic barrier function in mice following antibiotic perturbation[J]. Journal of Functional Foods, 2020, 71: 103973. DOI: 10.1016/j.jff.2020.103973
doi: 10.1016/j.jff.2020.103973
66 HU J L, WANG C Q, LI Q, et al. Lycium barbarum polysaccharide ameliorates radiation-induced brain injury by regulating gut microbiota[J]. Journal of Traditional Chinese Medical Sciences, 2023, 10(1): 42-51. DOI: 10.1016/j.jtcms.2022.11.005
doi: 10.1016/j.jtcms.2022.11.005
67 LIU Y W, XUE Y, ZHANG Z Q, et al. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury[J]. The FASEB Journal, 2023, 37(1): e22689. DOI: 10.1096/fj.202200945R
doi: 10.1096/fj.202200945R
68 LUO Y, FANG J L, YUAN K, et al. Ameliorative effect of purified anthocyanin from Lycium ruthenicum on atherosclerosis in rats through synergistic modulation of the gut microbiota and NF-κB/SREBP-2 pathways[J]. Journal of Functional Foods, 2019, 59: 223-233. DOI: 10.1016/j.jff.2019.05.038
doi: 10.1016/j.jff.2019.05.038
2 LIU F, LI T T. Release of The 2022 Blue Book of China’s Goji Industry [EB/OL]. (2022-06-23)[2023-02-11]. (in Chinese)
doi: 10.4236/chnstd.2022.112006
3 闫文丽.2022年宁夏枸杞种植面积 43.5万亩 鲜果产量30万吨[EB/OL].(2023-01-17)[2023-02-21].
YAN W L. In 2022, Ningxia wolfberry planting area of 435 000 Mu, fruit output of 300 000 t[EB/OL]. (2023-01-17)[2023-02-21]. (in Chinese)
4 WANG Y J, LIANG X J, GUO S J, et al. Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China[J]. Biochemical Systematics and Ecology, 2019, 86: 103916. DOI: 10.1016/j.bse.2019.103916
doi: 10.1016/j.bse.2019.103916
5 闫梅,马倩,马雅玲,等.枸杞多糖对LPS诱导的人视网膜色素上皮细胞炎性反应的影响及机制[J].国际眼科杂志,2021,21(3):411-416. DOI:10.3980/j.issn.1672-5123.2021.3.06
YAN M, MA Q, MA Y L, et al. Effect and relative mechanism of Lycium barbarum polysaccharide on LPS-induced inflammatory response within human retinal pigment epithelial cells[J]. International Eye Science, 2021, 21(3): 411-416. (in Chinese with English abstract)
doi: 10.3980/j.issn.1672-5123.2021.3.06
6 LI X, HOLT R R, KEEN C L, et al. Goji berry intake increases macular pigment optical density in healthy adults: a randomized pilot trial[J]. Nutrients, 2021, 13(12): 4409. DOI: 10.3390/nu13124409
doi: 10.3390/nu13124409
7 BOLESLAWSKA I, KOSEWSKI G, JAGIELSKI P, et al. Analysis of antioxidant capacity and polyphenol content of Goji fruit products available on the European market[J]. Acta Poloniae Pharmaceutica, 2021, 78(3): 345-351. DOI: 10.32383/appdr/138989
doi: 10.32383/appdr/138989
8 王亚军,梁晓婕,曾晓雄,等.不同成熟阶段枸杞果实中糖分含量的变化规律研究[J].干旱区资源与环境,2019,33(6):174-178. DOI:10.13448/j.cnki.jalre.2019.184
WANG Y J, LIANG X J, ZENG X X, et al. Law of changes of sugar contents in fruits of wolfberry at different mature periods[J]. Journal of Arid Land Resources and Environment, 2019, 33(6): 174-178. (in Chinese with English abstract)
doi: 10.13448/j.cnki.jalre.2019.184
9 AMAGASE H, FARNSWORTH N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji)[J]. Food Research International, 2011, 44(7): 1702-1717. DOI: 10.1016/j.foodres.2011.03.027
doi: 10.1016/j.foodres.2011.03.027
10 MASCI A, CARRADORI S, CASADEI M A, et al. Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review[J]. Food Chemistry, 2018, 254: 377-389. DOI: 10.1016/j.foodchem.2018.01.176
doi: 10.1016/j.foodchem.2018.01.176
11 符梦凡.枸杞多糖的分离提取及质量鉴定研究[D].杭州:浙江大学,2018.
FU M F. Studies on the extraction and quality determination of Lycium barbarum polysaccharide[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)
12 沈佳琳.黑果枸杞多糖的提取纯化、抗氧化活性及体外模拟消化和发酵研究[D].南京:南京农业大学,2017.
SHEN J L. Isolation, purification, antioxidant bioactivity, stimulated digestion and fermentation of polysaccharides from Lycium Ruthenicum Murr.[D]. Nanjing: Nanjing Agri-cultural University, 2017. (in Chinese with English abstract)
13 宋瑞龙,王紫薇,章海风.黑枸杞与红枸杞营养及活性成分比较[J].美食研究,2021,38(1):84-87. DOI:10.19913/j.cnki.2095-8730msyj.2021.0011
SONG R L, WANG Z W, ZHANG H F. Comparison of nutrition and active components between black and red wolfberry[J]. Journal of Researches on Dietetic Science and Culture, 2021, 38(1): 84-87. (in Chinese with English abstract)
doi: 10.19913/j.cnki.2095-8730msyj.2021.0011
14 MATTILA P, HELLSTRÖM J, TÖRRÖNEN R. Phenolic acids in berries, fruits, and beverages[J]. Journal of Agricultural and Food Chemistry, 2006, 54(19): 7193-7199. DOI: 10.1021/jf0615247
doi: 10.1021/jf0615247
15 刘梦瑶.宁夏黄果枸杞酚类物质分析及抗氧化、体外消化和发酵特性研究[D].杨凌:西北农林科技大学,2021.
LIU M Y. Phenolic analysis, antioxidant activity, in vitro digestion and fermentation characteristics of Lycium barbarum L. var. auranticarpum K.F.Ching[D]. Yangling: Northwest A&F University, 2021. (in Chinese with English abstract)
16 杨春霞.高效液相色谱法测定枸杞中9种酚酸化合物含量[J].食品研究与开发,2021,42(20):148-153. DOI:10.12161/j.issn.1005-6521.2021.20.022
YANG C X. Determination of nine kinds of phenolic acids in Lycium barbarum L. using high-performance liquid chro-matography[J]. Food Research and Development, 2021, 42(20): 148-153. (in Chinese with English abstract)
doi: 10.12161/j.issn.1005-6521.2021.20.022
17 CHEN S S, ZENG Z, HU N, et al. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology[J]. Food Chemistry, 2018, 242: 1-8. DOI: 10.1016/j.foodchem.2017.08.105
doi: 10.1016/j.foodchem.2017.08.105
18 ZHANG G, CHEN S S, ZHOU W, et al. Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity[J]. Food Chemistry, 2018, 269: 150-156. DOI: 10.1016/j.foodchem.2018.06.132
doi: 10.1016/j.foodchem.2018.06.132
[1] 王晶,刘滔,赵敏洁,冯凤琴,戴笑莹,乔海军,彭昕. 三叶青地上部分对肉鸡肠道菌群、免疫功能和生长性能的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 863-872.
[2] 徐超, 杨晓炼, 乐敏, 朱书. 细菌促进肠道病毒感染及其机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 140-148.
[3] 郑有秀, 王超, 姚静宜, 卢建军. 丁酸梭菌对断奶仔猪血清生化指标、抗氧化能力和肠道菌群的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 190-198.
[4] 叶玉娥, 叶明, 张蓉, 蔡振宇, 胡士明, 刘彩霞. 芽孢杆菌制剂对艾维茵肉鸡胴体性能和肠道菌群的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 305-310.
[5] 汤江武,孙宏,姚晓红,吴逸飞,王新. 芽孢杆菌在肉鸡肠道内的分布及对肠道菌群、消化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(3): 319-325.
[6] 马玉龙  许梓荣. 金霉素对肉鸡生长、肠道菌群和细菌酶、肠组织形态的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(4): 507-512.