Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (4): 526-534    DOI: 10.3785/j.issn.1008-9209.2023.02.231
研究论文     
大豆和花生表型及光合特性对荫蔽的响应
鲁兆宏(),谭婷婷,滕一鸣,杨文钰,杨峰()
四川农业大学农学院/农业农村部西南作物生理生态与耕作重点实验室/四川省作物带状复合种植工程技术研究中心,四川 成都 611130
Phenotypes and photosynthetic characteristics of soybeans and peanuts in response to shading
Zhaohong LU(),Tingting TAN,Yiming TENG,Wenyu YANG,Feng YANG()
College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
 全文: PDF(1444 KB)   HTML
摘要:

荫蔽直接影响作物的生长和发育,而荫蔽包括光强的降低和光质的改变。本研究采用室内盆栽试验,以大豆和花生为研究对象,设置正常光(N)处理[光强为433.83 μmol/(m2·s),红光/远红光(red/far-red, R/Fr)为4.26]、弱光(L)处理[光强为154.73 μmol/(m2·s),R/Fr为4.25]、荫蔽(S)处理[光强为159.43 μmol/(m2·s),R/Fr为0.45]3种光环境,研究大豆和花生植株形态、生物量、光合荧光特性等对荫蔽的响应。结果表明:与L处理相比,在S处理下,大豆的茎粗、光合色素含量明显增加,而大豆和花生的株高均显著降低,2种作物的净光合速率分别提高了60.70%和19.72%(P<0.05)。与N处理相比,在L处理下,大豆的株高显著增加,茎粗、总生物量、叶面积、比叶重、光合色素含量、净光合速率和产量显著降低,花生的叶面积、净光合速率和产量也显著降低,且其总生物量和光合色素含量也呈下降趋势。综上所述,2种作物在形态和光合荧光特性方面对光强和光质的适应性不同。

关键词: 大豆花生荫蔽光强光质    
Abstract:

Shading directly affects the growth and development of crops, which includes decreases in light intensity and changes in light quality. An indoor pot experiment was conducted with soybeans and peanuts under three light environments, including normal light (N) treatment [light intensity of 433.83 μmol/(m2·s), ratio of red to far-red light (R/Fr) of 4.26], low light (L) treatment [light intensity of 154.73 μmol/(m2·s), R/Fr of 4.25], and shading (S) treatment [light intensity of 159.43 μmol/(m2·s), R/Fr of 0.45), to study the response of soybean and peanut plant morphology, biomass, and photosynthetic fluorescence characteristics to shading. The results showed that the stem diameter and photosynthetic pigment content increased obviously in soybeans under the S treatment as compared with the L treatment, while the plant heights of soybeans and peanuts significantly decreased, and the net photosynthetic rates of the two crops increased by 60.70% and 19.72%, respectively (P<0.05). Compared with the N treatment, the plant height of soybeans increased significantly, and the stem diameter, total biomass, leaf area, specific leaf mass, photosynthetic pigment content, net photosynthetic rate and yield of soybeans decreased significantly under the L treatment; peanuts also showed a significant decrease in leaf area, net photosynthetic rate and yield, and a decreasing trend in total biomass and photosynthetic pigment content. In conclusion, the two crops have different adaptabilities to light intensity and light quality in terms of morphology and photosynthetic fluorescence characteristics.

Key words: soybean    peanut    shading    light intensity    light quality
收稿日期: 2023-02-23 出版日期: 2023-08-29
CLC:  S565.1  
基金资助: 国家自然科学基金面上项目(32071963);国家大学生创新性实验计划项目(202110626061)
通讯作者: 杨峰     E-mail: 1846865437@qq.com;f.yang@sicau.edu.cn
作者简介: 鲁兆宏(https://orcid.org/0000-0002-9283-682X),E-mail:1846865437@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
鲁兆宏
谭婷婷
滕一鸣
杨文钰
杨峰

引用本文:

鲁兆宏,谭婷婷,滕一鸣,杨文钰,杨峰. 大豆和花生表型及光合特性对荫蔽的响应[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 526-534.

Zhaohong LU,Tingting TAN,Yiming TENG,Wenyu YANG,Feng YANG. Phenotypes and photosynthetic characteristics of soybeans and peanuts in response to shading. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 526-534.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.02.231        https://www.zjujournals.com/agr/CN/Y2023/V49/I4/526

图1  不同光环境下大豆和花生幼苗形态A.大豆幼苗;B.花生幼苗。N:正常光;L:弱光;S:荫蔽(下同)。

处理

Treatment

大豆 Soybean花生 Peanut

株高

Plant height/

cm

茎粗

Stem diameter/

mm

第1复叶叶柄长度

Petiole length of

first compound

leaves/cm

株高

Plant height/

cm

茎粗

Stem diameter/

mm

倒3复叶叶柄长度

Petiole length of

antepenultimate

compound leaves/cm

分枝数

Number of

branches

N33.26±1.21b3.02±0.08a7.90±0.37b12.10±1.07a3.49±0.16a5.75±0.19a7.00±0.00a
L66.18±5.02a2.19±0.06c8.92±0.35b14.90±1.31a3.46±0.23a5.78±0.26a6.50±0.29a
S42.72±0.90b2.56±0.06b13.28±0.52a8.00±0.69b3.28±0.19a5.58±0.38a5.75±0.25b
表1  不同光环境对大豆和花生幼苗形态的影响
图2  大豆和花生叶柄夹角对不同光环境的动态响应A.大豆倒1复叶;B.花生倒3复叶。

作物

Crop

处理

Treatment

总生物量

Total biomass/g

叶面积

Leaf area/cm2

比叶重

Specific leaf mass/(g/m2)

大豆

Soybean

N1.59±0.10a360.95±17.65a25.96±0.50a
L0.90±0.05b297.72±8.95b15.14±0.50b
S0.97±0.05b324.85±9.74ab15.74±0.42b

花生

Peanut

N2.09±0.23a285.18±15.30a46.25±4.70a
L1.47±0.11ab190.36±4.05b41.35±2.44a
S1.15±0.05b184.25±9.26b38.83±2.59a
表2  不同光环境下大豆和花生幼苗干物质积累情况

作物

Crop

处理

Treatment

叶绿素a

Chl a/(mg/dm2)

叶绿素b

Chl b/(mg/dm2)

类胡萝卜素

Car/(mg/dm2)

总叶绿素

Chl (a+b)/(mg/dm2)

叶绿素a/叶绿素b

Chl a/Chl b

总叶绿素/类胡萝卜素

Chl (a+b)/Car

大豆

Soybean

N3.25±0.15a1.14±0.06a0.49±0.02a4.38±0.21a2.86±0.05a5.88±0.19b
L2.39±0.20c0.95±0.06b0.36±0.03c3.34±0.26c2.50±0.08b7.13±0.53a
S2.82±0.06b1.06±0.03ab0.44±0.02b3.88±0.09b2.67±0.02ab6.05±0.25b

花生

Peanut

N5.92±0.57a1.76±0.11a1.06±0.11a7.69±0.67a3.34±0.18a3.20±0.21a
L5.68±0.30ab1.85±0.09a0.91±0.06ab7.53±0.39ab3.08±0.03ab3.43±0.19a
S4.50±0.25b1.53±0.09a0.74±0.06b6.03±0.34b2.94±0.06b4.09±0.36a
表3  不同光环境下大豆和花生的光合色素含量

作物

Crop

处理

Treatment

净光合速率

Pn /(μmol/(m2·s))

气孔导度

Gs /(mol/(m2·s))

胞间CO2浓度

Ci /(μmol/mol)

蒸腾速率

Tr /(mmol/(m2·s))

大豆

Soybean

N19.31±0.17a0.18±0.00a239.22±2.65c5.14±0.07a
L7.76±0.21c0.12±0.01b322.37±4.87a4.01±0.24b
S12.47±0.23b0.18±0.01a296.21±1.69b5.17±0.12a

花生

Peanut

N23.65±0.53a0.18±0.01a191.31±3.53a4.85±0.17a
L15.82±0.43c0.12±0.01b185.63±16.28a3.54±0.27b
S18.94±0.51b0.16±0.00a213.30±7.46a4.58±0.06a
表4  不同光环境下大豆和花生的光合特征参数

作物

Crop

处理

Treatment

PSⅡ最大光化学效率

Fv /Fm

非调节性能量

耗散量子产量

ФNO

非光化学

淬灭系数

NPQ

PSⅡ实际光

化学量子产量

ФPSⅡ

光化学淬灭系数

qP

大豆

Soybean

N0.83±0.01a0.31±0.01b0.35±0.01ab0.34±0.01a0.51±0.01a
L0.83±0.00a0.36±0.01a0.39±0.02a0.25±0.01c0.37±0.01c
S0.83±0.00a0.39±0.02a0.32±0.02b0.29±0.01b0.41±0.01b

花生

Peanut

N0.84±0.01c0.27±0.01b0.28±0.01b0.45±0.01a0.68±0.01a
L0.85±0.01b0.32±0.02a0.31±0.02b0.37±0.02b0.53±0.03b
S0.86±0.01a0.27±0.01b0.40±0.01a0.33±0.01b0.51±0.01b
表5  不同光环境下大豆和花生的叶绿素荧光参数

处理

Treatment

大豆 Soybean花生 Peanut

单株有效荚数

Number of effectivepods per plant

单株粒数

Number of

grains per

plant

百粒质量

Hundred-grain

mass/g

单株产量

Yield per

plant/g

单株饱果数

Number of saturated

pods per plant

单株果仁数

Number of

kernels

per plant

百仁质量

Hundred-nut

mass/g

单株产量

Yield per

plant/g

N10.50±0.50a15.00±1.50a17.63±0.37a2.64±0.02a13.60±1.08a22.63±1.66a33.89±1.00a10.32±0.88a
L2.00±0.01b3.20±0.30b15.70±0.22b0.50±0.01b5.67±0.33b9.00±0.58b30.18±1.60b3.74±0.39b
S2.50±0.50b3.50±0.50b15.96±0.47ab0.56±0.02b3.75±0.48b5.50±0.50c24.34±1.26b1.89±0.18b
表6  不同光环境下大豆和花生的室内盆栽产量
1 任伟芳,魏雪娇,曾昭聪,等.江西省花生产业发展现状及展望[J].中国油料作物学报,2020,42(5):920-926. DOI:10.19802/j.issn.1007-9084.2019277
REN W F, WEI X J, ZENG Z C, et al. Present situation and prospect of peanut industry in Jiangxi Province[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 920-926. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019277
2 孙致陆.世界大豆产品贸易变动及其效应分解[J].华南农业大学学报(社会科学版),2019,18(2):84-96. DOI:10.7671/j.issn.1672-0202.2019.02.008
SUN Z L. Changes of world soybean trade and effects decom-position[J]. Journal of South China Agricultural University (Social Science Edition), 2019, 18(2): 84-96. (in Chinese with English abstract)
doi: 10.7671/j.issn.1672-0202.2019.02.008
3 严茂林,葛玮玮,张翔,等.我国油料产业形势分析与发展对策[J].中国油脂,2023,48(6):8-18. DOI:10.19902/j.cnki.zgyz.1003-7969.220115
YAN M L, GE W W, ZHANG X, et al. Situation analysis and development countermeasures of China’s oilseed industry[J]. China Oils and Fats, 2023, 48(6): 8-18. (in Chinese with English abstract)
doi: 10.19902/j.cnki.zgyz.1003-7969.220115
4 杨文钰,杨峰.发展玉豆带状复合种植,保障国家粮食安全[J].中国农业科学,2019,52(21):3748-3750. DOI:10.3864/j.issn.0578-1752.2019.21.003
YANG W Y, YANG F. Developing maize-soybean strip intercropping for ensuring security of national food[J]. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.21.003
5 李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报,2016,24(4):403-415. DOI:10.13930/j.cnki.cjea.160061
LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.160061
6 谭婷婷,范元芳,李盛蓝,等.套作模式下玉米荫蔽对大豆叶片叶绿体结构及光合特性的影响[J].核农学报,2020,34(10):2360-2367. DOI:10.11869/j.issn.100-8551.2020.10.2360
TAN T T, FAN Y F, LI S L, et al. Effects of maize shading on chloroplast structure and photosynthetic characteristics of soybean leaves under intercropping pattern[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2360-2367. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2020.10.2360
7 张晓娜.不同氮水平下玉米-大豆、玉米-花生带状复合种植茎叶器官对产量形成的响应机制研究[D].四川,成都:四川农业大学,2019.
ZHANG X N. Response mechanism of stem and leaf organs to yield formation in maize-soybean and maize-peanut multiple intercropping under different nitrogen levels[D]. Chengdu, Sichuan: Sichuan Agricultural University, 2019. (in Chinese with English abstract)
8 FAN Y F, CHEN J X, WANG Z L, et al. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis[J]. BMC Plant Biology, 2019, 19: 34. DOI: 10.1186/s12870-019-1633-1
doi: 10.1186/s12870-019-1633-1
9 YANG F, HUANG S, GAO R C, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red∶far-red ratio[J]. Field Crops Research, 2014, 155: 245-253. DOI: 10.1016/j.fcr.2013.08.011
doi: 10.1016/j.fcr.2013.08.011
10 HITZ T, HARTUNG J, GRAEFF-HÖNNINGER S, et al. Morphological response of soybean (Glycine max (L.) Merr.) cultivars to light intensity and red to far-red ratio[J]. Agronomy, 2019, 9(8): 428. DOI: 10.3390/agronomy9080428
doi: 10.3390/agronomy9080428
11 ZHANG Y T, ZHANG Y Q, YANG Q C, et al. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs[J]. Journal of Integrative Agriculture, 2019, 18(1): 62-69. DOI: 10.1016/S2095-3119(18)62130-6
doi: 10.1016/S2095-3119(18)62130-6
12 ZHEN S Y, BUGBEE B. Far-red photons have equivalent efficiency to traditional photosynthetic photons: implications for redefining photosynthetically active radiation[J]. Plant, Cell & Environment, 2020, 43(5): 1259-1272. DOI: 10.1111/pce.13730
doi: 10.1111/pce.13730
13 ZHEN S Y, VAN LERSEL M W, BUGBEE B. Photosynthesis in sun and shade: the surprising importance of far-red photons[J]. New Phytologist, 2022, 236(2): 538-546. DOI: 10.1111/nph.18375
doi: 10.1111/nph.18375
14 TAN T T, LI S L, FAN Y F, et al. Far-red light: a regulator of plant morphology and photosynthetic capacity[J]. The Crop Journal, 2022, 10(2): 300-309. DOI: 10.1016/j.cj.2021.06.007
doi: 10.1016/j.cj.2021.06.007
15 李盛蓝,谭婷婷,范元芳,等.玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响[J].中国农业科学,2019,52(21):3782-3793. DOI:10.3864/j.issn.0578-1752.2019.21.007
LI S L, TAN T T, FAN Y F, et al. Effects of maize shading on photosynthetic characteristics, vein and stomatal charac-teristics of soybean[J]. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.007
16 YANG F, LIU Q L, CHEN Y J, et al. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity[J]. BMC Plant Biology, 2020, 20: 148. DOI: 10.1186/s12870-020-02352-0
doi: 10.1186/s12870-020-02352-0
17 FENG L Y, RAZA M A, LI Z C, et al. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean[J]. Frontiers in Plant Science, 2019, 9: 1952. DOI: 10.3389/fpls.2018.01952
doi: 10.3389/fpls.2018.01952
18 吴正锋,孙学武,左绍玲,等.荫蔽花生转入自然光照下光合作用的光抑制及光保护机制[J].中国油料作物学报,2017,39(5):648-654. DOI:10.7505/j.issn.1007-9084.2017.05.009
WU Z F, SUN X W, ZUO S L, et al. Photo-inhibition and photo-protective mechanisms of shaded peanut leaves after re-exposure to natural light[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(5): 648-654. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2017.05.009
19 程亚娇,谌俊旭,王仲林,等.光强和光质对大豆幼苗形态及光合特性的影响[J].中国农业科学,2018,51(14):2655-2663. DOI:10.3864/j.issn.0578-1752.2018.14.003
CHENG Y J, CHEN J X, WANG Z L, et al. Effects of light intensity and light quality on morphology and photosynthetic characteristics of soybean seedlings[J]. Scientia Agricultura Sinica, 2018, 51(14): 2655-2663. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.14.003
20 李得孝,郭月霞,员海燕,等.玉米叶绿素含量测定方法研究[J].中国农学通报,2005,21(6):153-155. DOI:10.3969/j.issn.1000-6850.2005.06.044
LI D X, GUO Y X, YUN H Y, et al. Determined methods of chlorophyll from maize[J]. China Agricultural Science Bulletin, 2005, 21(6): 153-155. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2005.06.044
21 舒展,张晓素,陈娟,等.叶绿素含量测定的简化[J].植物生理学通讯,2010,46(4):399-402. DOI:10.13592/j.cnki.ppj.2010.04.001
SHU Z, ZHANG X S, CHEN J, et al. The simplification of chlorophyll content measurement[J]. Plant Physiology Journal, 2010, 46(4): 399-402. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2010.04.001
22 苏本营,宋艳霞,陈圣宾,等.大豆幼苗对套作玉米遮阴环境的光合生理生态响应[J].生态学报,2015,35(10):3298-3308. DOI:10.5846/stxb201307031833
SU B Y, SONG Y X, CHEN S B, et al. Photosynthetic responses of soybean (Glycine max) seedlings to shading caused by maize in an intercropping system[J]. Acta Ecologica Sinica, 2015, 35(10): 3298-3308. (in Chinese with English abstract)
doi: 10.5846/stxb201307031833
23 王一,张霞,杨文钰,等.不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响[J].中国农业科学,2016,49(11):2072-2081. DOI:10.3864/j.issn.0578-1752.2016.11.004
WANG Y, ZHANG X, YANG W Y, et al. Effect of shading on soybean leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages[J]. Scientia Agricultura Sinica, 2016, 49(11): 2072-2081. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.11.004
24 RUBERTI I, SESSA G, CIOLFI A, et al. Plant adaptation to dynamically changing environment: the shade avoidance response[J]. Biotechnology Advances, 2012, 30(5): 1047-1058. DOI: 10.1016/j.biotechadv.2011.08.014
doi: 10.1016/j.biotechadv.2011.08.014
25 SHAFIQ I, HUSSAIN S, RAZA M A, et al. Crop photo-synthetic response to light quality and light intensity[J]. Journal of Integrative Agriculture, 2021, 20(1): 4-23. DOI: 10.1016/S2095-3119(20)63227-0
doi: 10.1016/S2095-3119(20)63227-0
26 PIERIK R, TESTERINK C. The art of being flexible: how to escape from shade, salt, and drought[J]. Plant Physiology, 2014, 166(1): 5-22. DOI: 10.1104/pp.114.239160
doi: 10.1104/pp.114.239160
27 ZHANG W P, LI Z X, GAO S N, et al. Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize[J]. Field Crops Research, 2023, 291: 108779. DOI: 10.1016/j.fcr.2022.108779
doi: 10.1016/j.fcr.2022.108779
28 ZHANG J F, WAN L, IGATHINATHANE C, et al. Spatio-temporal heterogeneity of chlorophyll content and fluorescence response within rice (Oryza sativa L.) canopies under different nitrogen treatments[J]. Frontiers in Plant Science, 2021, 12: 645977. DOI: 10.3389/fpls.2021.645977
doi: 10.3389/fpls.2021.645977
[1] 张慧,怀燕,周伟军,冯玥,王月星. 浙江省大豆油料产业现状及未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 454-462.
[2] 李建飞,王肖肖,舒跃,黄奇,唐桂香. 大豆炭疽病的分类、流行监测与防治研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 463-471.
[3] 吴杨,姚小华,何正盛,王春娥,周会汶,叶思诚,宋英培,王璠,张弦,高银祥. 光对油茶光合作用及生长发育影响的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 147-157.
[4] 史宗勇,陈子言,祁琛,王成,赵梦晓,李夏莹,王文斌,袁建琴,许冬梅,乔永刚,刘建东,张秀杰,高建华. 一种用于鉴定18种转基因大豆转化体的多靶标质粒的构建与应用[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 280-290.
[5] 翁嘉慧,楼亿圆,徐京,何军光,张晓丽,刘永立. AM79-EPSPS基因耐草甘膦大豆的获得及功能验证[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 675-684.
[6] 桂江生,吴子娴,李凯. 基于卷积神经网络模型的大豆花叶病初期高光谱检测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 256-262.
[7] 庞婷,帅鹏,陈平,杜青,付智丹,杨文钰,雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 451-461.
[8] 方萍,刘卫国,刘孝德,刘婷,池晓玉,许燕,庞婷,彭霄,蔡凌,杨文钰. 玉-豆间作对菜用大豆品质的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 556-.
[9] 孔青, 迟晨, 单世华, 李琦玉. 花生中巨大芽孢杆菌对黄曲霉毒素合成相关基因的抑制[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 567-576.
[10] 程云清1*, 张奇2, 刘剑锋1, 张会弟1, 张春吉1. 外源乙烯调控大豆花粉育性的研究[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 25-32.
[11] 唐秀莹1, 陈正礼1,2,3*, 罗启慧2,3, 张小龙1. 大豆异黄酮对大鼠肠道上皮内淋巴细胞、杯状细胞及瘦素长型受体的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 343-350.
[12] 马林1, 周练1, 周正剑1, 唐桂香2, 沈志成2, 寿惠霞1. 抗除草剂转基因水稻和大豆快速准确检测技术研究[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 647-654.
[13] 范觉鑫1,2, 张彬2, 李丽立1, 袁晓雪1, 耿梅梅1, 罗佳捷2. 大豆异黄酮对雄性香猪生殖器官发育及组织生化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 477-484.
[14] 雷婷, 向达兵, 郭凯, 杨文钰, 刘增禹, 陈小容. 磷钾对套作大豆干物质积累与分配及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 318-328.
[15] 万燕,闫艳红,杨文钰. 不同氮肥水平下叶面喷施烯效唑对套作大豆生长和氮代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 185-196.