Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (6): 675-684    DOI: 10.3785/j.issn.1008-9209.2019.04.081
园艺学     
AM79-EPSPS基因耐草甘膦大豆的获得及功能验证
翁嘉慧1,2(),楼亿圆1,徐京1,何军光1(),张晓丽1,刘永立2()
1.浙江新安化工集团股份有限公司,杭州 311600
2.浙江大学农业与生物技术学院,杭州 310058
Acquisition and functional validation of transgenic AM79-EPSPS glyphosate-resistant soybean (Glycine max L.)
Jiahui WENG1,2(),Yiyuan LOU1,Jing XU1,Junguang HE1(),Xiaoli ZHANG1,Yongli LIU2()
1.Zhejiang Xin’an Chemical Industry Group Co. , Ltd. , Hangzhou 311600, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2637 KB)   HTML
摘要:

以天隆一号大豆为受体材料,通过农杆菌介导的遗传转化方法,从消毒时间、乙酰丁香酮(acetosyringone, AS)添加浓度、草甘膦添加浓度和生根阶段吲哚丁酸(indole-3-butyric acid, IBA)浸没时间等因素出发,探究并建立高效的转AM79-EPSPS基因大豆转化体系,将具有我国自主知识产权的新基因AM79-EPSPS导入大豆,并验证它在转基因大豆中的功能。结果表明:当种子消毒时间为6~8 h,AS添加浓度为200 μmol/L,草甘膦添加浓度为100 μmol/L,IBA浸没时间为30 s时,转化效果最好。通过该转化体系获得了6株转AM79-EPSPS基因耐草甘膦大豆苗,并对其T0、T1、T2代植株进行了蛋白检测及草甘膦喷施实验。结果表明:在各世代转基因植株中均能检测出AM79-EPSPS蛋白,说明AM79-EPSPS基因能够在大豆中正常表达;喷施草甘膦后,非转基因大豆植株全部枯萎,而转AM79-EPSPS基因大豆植株均能正常生长,表现出明显的草甘膦耐受性。

关键词: 转基因大豆AM79-EPSPS基因草甘膦转化体系    
Abstract:

In order to introduce a new gene AM79-EPSPS with independent intellectual property rights into soybean and verify its function in transgenic soybean, an efficient transformation system of AM79-EPSPS gene was established through Agrobacterium-mediated genetic transformation from disinfection time, acetosyringone (AS) concentration, glyphosate concentration and indole-3-butyric acid (IBA) immersion time at the rooting stage with the receptor material of Tianlong No. 1 soybean. It was clear that the transformation effect was the best under the following optimal condition: the disinfection time of 6-8 h, the AS concentration of 200 μmol/L, the glyphosate concentration of 100 μmol/L, and the IBA immersion time of 30 s. Six transgenic AM79-EPSPS glyphosate-resistant soybeans were obtained, and the protein detection and glyphosate spraying experiments were carried out on the T0, T1 and T2 generation plants. The results showed that AM79-EPSPS protein could be detected in all generation plants containing AM79-EPSPS gene, which indicated that AM79-EPSPS gene could be expressed normally in the soybean. After spraying glyphosate, all non-transgenic soybean plants withered, while the transgenic AM79-EPSPS gene soybean plants could normally grow and showed obvious glyphosate tolerance.

Key words: transgenic soybean    AM79-EPSPS gene    glyphosate    conversion system
收稿日期: 2019-04-08 出版日期: 2020-01-20
CLC:  S 565.1  
基金资助: 国家转基因生物新品种培育科技重大专项(2016ZX08003-001)
通讯作者: 何军光,刘永立     E-mail: wengjh5132@126.com;hejunguang121@126.com;liuyongli@zju.edu.cn;hejunguang121@126.com
作者简介: 翁嘉慧(https://orcid.org/0000-0001-6292-8427),E-mail:wengjh5132@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
翁嘉慧
楼亿圆
徐京
何军光
张晓丽
刘永立

引用本文:

翁嘉慧,楼亿圆,徐京,何军光,张晓丽,刘永立. 转AM79-EPSPS基因耐草甘膦大豆的获得及功能验证[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 675-684.

Jiahui WENG,Yiyuan LOU,Jing XU,Junguang HE,Xiaoli ZHANG,Yongli LIU. Acquisition and functional validation of transgenic AM79-EPSPS glyphosate-resistant soybean (Glycine max L.). Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 675-684.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.04.081        http://www.zjujournals.com/agr/CN/Y2019/V45/I6/675

图1  AM79-pC3301载体图谱CaMV 35S promoter:花椰菜花叶病毒35S启动子;SP:豌豆中rbcS叶绿体转运肽;nos terminator:胭脂碱合成酶基因终止子;T-border (right):农杆菌介导的T-DNA右边界序列;pVS1 sta:pVS1质粒的稳定位点;pVS1 rep:pVS1质粒的复制起始位点;pBR322 bom:pBR322质粒的bom位点,迁移蛋白质mop的作用位点;pBR322 ori:pBR322质粒的复制起始位点;kanamycin (R):编码AphA-3蛋白,赋予细菌卡那霉素耐受性;T-border (left):农杆菌介导的T-DNA左边界序列。

指标

Index

消毒时间 Disinfection time/h
0468101224

污染率

Pollution rate/%

99.33±1.15a65.33±10.07b1.33±2.31c0.67±1.15c0.00±0.00c1.33±2.31c0.00±0.00c

萌发率

Germination rate/%

88.67±3.06bc92.67±3.07ab95.33±3.07a93.33±1.15ab82.67±4.16c68.00±7.21d18.00±6.00e
表1  不同消毒时间下大豆种子的污染率和萌发率
图2  不同草甘膦浓度对大豆外植体出芽率和芽伸长率的影响A~F.草甘膦添加浓度分别为0、60、80、100、200、500 μmol/L。

指标

Index

草甘膦浓度 Glyphosate concentration/(μmol/L)
0406080100200500

出芽率

Budding rate/%

95.23±3.15a74.83±4.26b60.53±7.74c54.43±6.21c38.77±7.32d9.50±3.11e3.40±1.21e

芽伸长率

Bud elongation rate/%

93.23±5.13a60.53±4.26b40.13±2.31c33.33±4.22c10.87±4.26d0.00±0.00d0.00±0.00d
表2  不同草甘膦浓度下大豆外植体出芽率和芽伸长率

指标

Index

AS浓度 AS concentration/(μmol/L)
050100150200250300

出芽率

Budding rate/%

30.63±5.40c33.33±3.10bc38.77±2.05ab41.50±3.11a40.10±3.11a29.27±3.15c18.40±4.05d

芽伸长率

Bud elongation rate/%

6.80±1.21cd6.80±3.11cd10.20±2.00abc12.23±4.05ab14.30±4.10a8.17±2.05bcd3.40±1.21d
表3  不同AS浓度下大豆外植体出芽率和芽伸长率

指标

Index

浸没时间 Immersion time/s
03060120180300600

生根率

Rooting rate/%

3.33±5.77d96.67±5.77a93.33±5.77ab86.67±11.55ab83.33±5.77b50.00±10.00c10.00±10.00d
表4  不同IBA浸没时间下再生苗的生根率
图3  转基因大豆再生苗基因组DNA的PCR检测结果M:DL2000 DNA分子质量标志物;A1~A9:转化所得大豆苗; N:阴性受体材料;P:质粒。
图4  T0代阳性植株AM79-EPSPS蛋白表达检测结果P:阳性对照(AM79-EPSPS蛋白标准品);N:阴性对照(EB004缓冲液);A2~A3、A6~A9:转基因大豆苗。C:试纸条显色线; T:AM79-EPSPS蛋白显色线。
图5  T0代转AM79-EPSPS基因大豆植株抗性测试结果A.转基因大豆苗;B.阴性对照。

世代

Generation

存活率 Survival rate/%

阴性对照

Negative control

转基因植株

Transgenic plants

T00100
T10100
T20100
表5  T0~T2代转基因大豆植株喷施草甘膦后存活率统计
1 吴峰.转基因大豆进口贸易对我国大豆产业发展影响研究.南京:南京农业大学,2014:25-26.
WU F. The study on the import trade of GM soybean and its influence on soybean industry development in China. Nanjing: Nanjing Agricultural University, 2014:25-26. (in Chinese with English abstract)
2 PRICE A J, BALKCOM K S, CULPEPPER S A, et al. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. Journal of Soil and Water Conservation, 2011,66(4):265-275.
3 王园园,王敏,相世刚,等.全球抗除草剂转基因作物转化事件分析.农业生物技术学报,2018,26(1):167-175.
WANG Y Y, WANG M, XIANG S G, et al. Analysis on the event of global herbicide tolerant transgenic crops. Journal of Agricultural Biotechnology, 2018,26(1):167-175. (in Chinese with English abstract)
4 刘力.转基因大豆对我国非转基因大豆的影响.武汉:华中师范大学,2014:14-21.
LIU L. Effects of GM soybean on non-GM soybean in China. Wuhan: Central China Normal University, 2014:14-21. (in Chinese with English abstract)
5 查霆,钟宣伯,周启政,等.我国大豆产业发展现状及振兴策略.大豆科学,2018,37(3):458-463.
ZHA T, ZHONG X B, ZHOU Q Z, et al. Development status of China’s soybean industry and strategies of revitalizing. Soybean Science, 2018,37(3):458-463. (in Chinese with English abstract)
6 马文杰.中国食用油安全战略转变:国内条件与国际情景.中国工程科学,2016,18(1):42-27.
MA W J. Changes of China’s edible oil security strategies: domestic condition and international situation. Strategic Study of CAE, 2016,18(1):42-47. (in Chinese with English abstract)
7 崔宁波,刘望.我国转基因抗除草剂大豆产业化的社会福利预测:基于DREAM模型.江苏农业科学,2018,46(13):304-307.
CUI N B, LIU W. Social welfare prediction of genetically modified herbicide-resistant soybean industrialization in China based on DREAM model. Jiangsu Agricultural Sciences, 2018,46(13):304-307. (in Chinese with English abstract)
8 HENAO MUNZO L M. Acute toxicity and sublethal effects of the mixture glyphosate (Roundup? Active) and Cosmo-Flux?411F to anuran embryos and tadpoles of four Colombian species. Revista De Biologia Tropical, 2015,63(1):223-233.
9 林敏,梁爱敏,陆伟,等.高耐受草甘膦的EPSP合酶及其编码序列:200710177090.1. 2009-05-13.
LIN M, LIANG A M, LU W, et al. EPSP synthase with high glyphosate tolerance and its coding sequence: 200710177090.1. 2009-05-13. (in Chinese)
10 曹高燚,陈荣荣,杜锦,等.5-烯醇式丙酮酰-莽草酸-3-磷酸合成酶(EPSPS)基因AM79 aroA的活性位点分析.农业生物技术学报,2015,23(5):606-616.
CAO G Y, CHEN R R, DU J, et al. Analysis of the active sites in an 5-enolpyruvy-shikimate-3-phosphate synthase (EPSPS) gene of AM79 aroA. Journal of Agricultural Bio-technology, 2015,23(5):606-616. (in Chinese with English abstract)
11 REN Z J, CAO G Y, ZHANG Y W, et al. Overexpression of a modified AM79aroA gene in transgenic maize confers high tolerance to glyphosate. Journal of Integrative Agriculture, 2015,14(3):414-422.
12 PAZ M M, SHOU H X, GUO Z B, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica, 2004,136(2):167-179.
13 SHRAWAT A K, GOOD A G. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Methods in Molecular Biology, 2011,710:355-372.
14 廖志强,王小武,孙亮,等.甘蓝型油菜带节子叶再生体系的建立及遗传转化应用.中国农学通报,2017,33(34):47-52.
LIAO Z Q, WANG X W, SUN L, et al. Establishment of regeneration system of cotyledon with cotyledonary node from Brassica napus and transformation application. Chinese Agricultural Science Bulletin, 2017,33(34):47-52. (in Chinese with English abstract)
15 杜升伟,刘业丽,姚丙晨,等.大豆转化体系的优化和Dof 4基因转入大豆的研究.大豆科学,2010,29(3):398-402.
DU S W, LIU Y L, YAO B C, et al. Optimization of soybean transformation system and transferring Dof 4 gene into soybean. Soybean Science, 2010,29(3):398-402. (in Chinese with English abstract)
16 刘银.农杆菌介导大豆转化体系的建立及植酸酶基因的导入.江苏,扬州:扬州大学,2013:19-27.
LIU Y. Establishment of Agrobacterium tumefaciens-mediated soybean transformation system and developing of transgenic soybean with Phy gene. Yangzhou, Jiangsu: Yangzhou University, 2013:19-27. (in Chinese with English abstract)
17 李冬梅,陈薇,李永光,等.大豆子叶节遗传转化体系的优化研究.大豆科学,2018,37(4):45-52.
LI D M, CHEN W, LI Y G, et al. Optimization for the transformation system of soybean cotyledon node. Soybean Science, 2018,37(4):45-52. (in Chinese with English abstract)
18 孙昕,闫帆,赵健如,等.大豆子叶节丛生芽的诱导研究.大豆科学,2012,31(2):184-187.
SUN X, YAN F, ZHAO J R, et al. Induction of multiple shoots from soybean cotyledonary node. Soybean Science, 2012,31(2):184-187. (in Chinese with English abstract)
19 白肖飞.农杆菌介导大豆转化系统的建立.呼和浩特:内蒙古农业大学,2012:21-22.
BAI X F. Establishment of agrobacterium-mediated soybean transformation system. Hohhot: Inner Mongolia Agricultural University, 2012:21-22. (in Chinese with English abstract)
20 翟锐,高乐,丁雪妮,等.农杆菌介导大豆子叶节遗传转化体系的优化.大豆科学,2015,34(5):768-775.
ZHAI R, GAO L, DING X N, et al. Optimization of cotyledonary-node Agrobacterium-mediated soybean trans-formation system. Soybean Science, 2015,34(5):768-775. (in Chinese with English abstract)
21 王婷婷.农杆菌介导的大豆子叶节法体系优化及大豆中一个WRKY28-like基因的克隆与功能分析.南京:南京农业大学,2015:27-32.
WANG T T. Optimization of Agrobacterium mediated soybean cotyledon node method and cloning and functional analysis of a WRKY28-like gene in soybean. Nanjing: Nanjing Agricultural University, 2015:27-32. (in Chinese with English abstract)
22 王婉婉.大豆组织培养体系的优化及EPSPS遗传转化的研究.天津:天津大学,2010:24-35.
WANG W W. Study on optimization of soybean tissue culture system and genetic transformation of EPSPS. Tianjin: Tianjin University, 2010:24-35. (in Chinese with English abstract)
23 陆玲鸿,韩强,李林,等.以草甘膦为筛选标记的大豆转基因体系的建立及抗除草剂转基因大豆的培育.中国科学(生命科学),2014,44(4):406-415.
LU L H, HAN Q, LI L, et al. Establishment of soybean transgenic system with glyphosate as screening marker and cultivation of herbicide-resistant soybean. Chinese Science (Life Science), 2014,44(4):406-415. (in Chinese with English abstract)
24 陆姗姗,孟祥善,李娟,等.苦豆子遗传转化体系建立及SaLDC启动子缺失分析.中国中药杂志,2017,42(10):1853-1859.
LU S S, MENG X S, LI J, et al. Establishment of genetic transformation system for Sophora alopecuroides and deletion analysis of SaLDC promoter. China Journal of Chinese Materia Medica, 2017,42(10):1853-1859. (in Chinese with English abstract)
25 丰明,王旭达,王鹤,等.辽棉19号转化耐盐基因AlNHX1的研究.中国农业大学学报,2017,22(10):36-44.
FENG M, WANG X D, WANG H, et al. Research on transforming salt-tolerant gene AlNHX1 to cotton Liao19. Journal of China Agricultural University, 2017,22(10):36-44. (in Chinese with English abstract)
26 王蓓蓓,张炎,金博文,等.农杆菌介导的白杨遗传优化体系研究.西南林业大学学报(自然科学),2018,38(4):14-21.
WANG B B, ZHANG Y, JIN B W, et al. Optimization system of Agrobacterium-mediated transformation of leuce. Journal of Southwest Forestry University (Natural Science), 2018,38(4):14-21. (in Chinese with English abstract)
27 柯丹霞,熊文真,彭昆鹏,等.抗盐基因Gm01g04890大豆子叶节遗传转化研究.信阳师范学院学报(自然科学版), 2017,30(1):46-51.
KE D X, XIONG W Z, PENG K P, et al. Study on genetic transformation of salt resistant gene Gm01g04890 in soybean. Journal of Xinyang Normal University (Natural Science Edition), 2017,30(1):46-51. (in Chinese with English abstract)
28 皮照兴,廉玉利,李依娜,等.农杆菌介导的大豆子叶节遗传转化研究.辽宁师专学报(自然科学版),2016,18(3):86-90.
PI Z X, LIAN Y L, LI Y N, et al. On Agrobacterium-mediated genetic transformation system of soybean cotyledon node. Journal of Liaoning Teachers College (Natural Science Edition), 2016,18(3):86-90. (in Chinese with English abstract)
29 LIU S J, HUANG J Q, WEI Z M. Factors influencing Agrobacterium-mediated cotyledonary-node transformation of soybean (Glycine max L.). Journal of Molecular Cell Biology, 2007,40(5):286-294.
30 谢璐遥.大豆GmSOT1基因的克隆与功能研究.成都:四川农业大学,2014:30-32.
XIE L Y. Cloning and functional study of GmSOT1 gene from soybean. Chengdu: Sichuan Agricultural University, 2014:30-32. (in Chinese with English abstract)
31 代兵兵.大豆硫苷代谢功能基因GmSOT1的遗传转化与功能鉴定.成都:四川农业大学,2016:27-29.
DAI B B. Genetic transformation and functional identification of glycoside metabolic functional gene GmSOT1. Chengdu: Sichuan Agricultural University, 2016:27-29. (in Chinese with English abstract)
32 廖人燕,彭怀晴,黄科文.不同浓度IBA及浸泡时间对金钱草水插生根的影响.中国现代中药,2018,20(1):63-65.
LIAO R Y, PENG H Q, HUANG K W. Effects of cutting rooting of Lysimachia christinae Hance on different IBA concentrations and soaking time in hydroponics. Modern Chinese Medicine, 2018,20(1):63-65. (in Chinese with English abstract)
33 赵迪.农杆菌介导的ZmAChE基因对大豆的遗传转化研究.哈尔滨:哈尔滨师范大学,2014:18-24.
ZHAO D. Agrobacterium-mediated transformation of ZmAChE gene into soybean. Harbin: Harbin Normal University, 2014:18-24. (in Chinese with English abstract)
34 韩强.抗虫及抗除草剂转基因大豆新品种的培育与鉴定.杭州:浙江大学,2015:22-23.
HAN Q. Breeding and identification of new genetically modified soybean varieties resistant to insects and herbicides. Hangzhou: Zhejiang University, 2015:22-23. (in Chinese with English abstract)
35 郭文芳,王楠,李刚强,等.CP4-EPSPS转基因棉花植株鉴定方法比较分析.生物技术通报,2017,33(4):114-118.
GUO W F, WANG N, LI G Q, et al. Comparative analysis of identification methods of CP4-EPSPS transgenic cotton plants. Biotechnology Bulletin, 2017,33(4):114-118. (in Chinese with English abstract)
36 李太强,高亚男,高居荣,等.转基因小麦中bar基因检测方法研究.麦类作物学报,2016,35(9):1190-1193.
LI T Q, GAO Y N, GAO J R, et al. Different methods for detection of bar gene in transgenic wheat. Journal of Triticeae Crops, 2016,35(9):1190-1193. (in Chinese with English abstract)
[1] 马林1, 周练1, 周正剑1, 唐桂香2, 沈志成2, 寿惠霞1.   抗除草剂转基因水稻和大豆快速准确检测技术研究[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 647-654.
[2] 朱国念 楼正云 孙锦荷. 草甘膦对水生生物的毒性效应及环境安全性研究[J]. 浙江大学学报(农业与生命科学版), 2000, 26(3): 309-312.