Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 765-775    DOI: 10.3785/j.issn.1008-9209.2022.12.131
综述     
牛和小鼠早期胚胎发育过程中细胞谱系发育调控的比较
吴潇彤(),史延,李爽,王少华,张坤()
浙江大学动物科学学院,浙江省奶牛遗传改良与乳品质研究重点实验室,浙江 杭州 310058
Comparison of cell lineage development and regulation during early embryonic development in cattle and mice
Xiaotong WU(),Yan SHI,Shuang LI,Shaohua WANG,Kun ZHANG()
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(2280 KB)   HTML
摘要:

高产奶牛繁殖效率低是世界性难题,其中早期胚胎死亡率高是主要原因之一。当前对牛早期胚胎发育的研究有限,而对于小鼠这种模式动物的早期胚胎发育研究已相当深入。因此,本文从胚胎形态、转录因子以及信号通路3方面对牛和小鼠早期胚胎发育过程进行比较,以加深对牛早期胚胎发育的认识。经比较发现,受精后,牛和小鼠早期胚胎在不同时期发生母源因子降解、合子基因组激活、细胞极性建立和不对称分裂,最终使得胚胎形态发生变化,形成具有3个胚层(滋养外胚层、上胚层和原始内胚层)的囊胚。此外,牛和小鼠早期胚胎发育过程中,多个转录因子及信号通路形成复杂网络调控细胞谱系分化。综上所述,在牛和小鼠早期胚胎发育过程中,相似的生物学事件陆续发生,但是细胞谱系分化的调控呈现差异性,提示我们将小鼠早期胚胎作为研究模型的局限性,该领域的研究对提高奶牛繁殖效率以及促进牛遗传改良工作具有重要意义。

关键词: 小鼠着床前早期胚胎谱系分化滋养外胚层内细胞团    
Abstract:

Low reproductive efficiency of high-yielding dairy cows is a worldwide challenge, among which the high mortality rate of early embryos is one of the main reasons. Scientists have gained insightful knowledge into early embryonic development in mice while very little work has been performed in cattle. To better understand the early embryonic development in cattle, we compared early embryonic development in cattle and mice from the perspectives of embryo morphology, transcription factors and signaling pathways. It was found that after fertilization, degradation of maternal factors, zygotic genome activation, construction of cell polarity and asymmetric division occurred at different periods in the early embryos of cattle and mice. Eventually, embryos develop to blastocysts with three germ layers (trophectoderm, epiblast and primitive endoderm). Furthermore, multiple transcription factors and signaling pathways form complicated networks to regulate cell lineage differentiation during early embryonic development in cattle and mice. In summary, similar biological events occur one after another at the early embryonic development in cattle and mice, but the regulation of cell lineage differentiation is different, suggesting the limitations of using the early embryo of mouse as a research model. The study in this field plays a crucial role in improving reproductive efficiency of dairy cows and promoting the genetic improvement in cattle.

Key words: cattle    mouse    preimplantation    early embryo    lineage differentiation    trophectoderm    inner cell mass
收稿日期: 2022-12-13 出版日期: 2023-12-25
CLC:  Q954.4  
基金资助: 浙江省自然科学基金重点项目(LZ21C170001);国家自然科学基金面上项目(32072731);青海省重大科技专项(2021-NK-A5)
通讯作者: 张坤     E-mail: wsxt412726@163.com;kzhang@zju.edu.cn
作者简介: 吴潇彤(https://orcid.org/0000-0002-7669-6695),E-mail:wsxt412726@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴潇彤
史延
李爽
王少华
张坤

引用本文:

吴潇彤,史延,李爽,王少华,张坤. 牛和小鼠早期胚胎发育过程中细胞谱系发育调控的比较[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 765-775.

Xiaotong WU,Yan SHI,Shuang LI,Shaohua WANG,Kun ZHANG. Comparison of cell lineage development and regulation during early embryonic development in cattle and mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 765-775.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.12.131        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/765

图1  小鼠和牛早期胚胎发育过程中的形态变化及关键生物学事件

早期胚胎发育事件

Event of early

embryonic

development

发育时期

Period of development

小鼠胚胎

Mouse embryo

牛胚胎

Cattle embryo

合子基因组激活 ZGA2细胞期[6]8—16细胞期[8]
致密化 Compaction8细胞期[9]16—32细胞期[10]
表1  小鼠和牛早期胚胎发育时期和事件比较
图2  小鼠和牛胚胎第一次细胞谱系分化黑色尖箭头代表促进表达,T形箭头代表抑制表达,带红色“”的箭头代表表达不受影响。
图3  小鼠和牛胚胎第二次细胞谱系分化黑色箭头代表促进表达,带红色“”的箭头代表表达不受影响。

早期胚胎发育生物学机制

Biological mechanisms at early embryonic development

小鼠胚胎

Mouse embryo

牛胚胎

Cattle embryo

抑制YAP是否影响囊胚发育 Whether inhibition of YAP affects blastocyst development[33][27]
抑制TEAD4是否影响囊胚发育 Whether inhibition of TEAD4 affects blastocyst development[39][36]
抑制TEAD4是否影响CDX2表达 Whether inhibition of TEAD4 affects CDX2 expression[39][35]
抑制TEAD4是否影响GATA3表达 Whether inhibition of TEAD4 affects GATA3 expression[39][35]
抑制CDX2是否影响囊胚发育 Whether inhibition of CDX2 affects blastocyst development[47][43]

过表达H1FOO是否影响囊胚发育

Whether overexpression of H1FOO affects blastocyst development

[50][50]

敲除NANOG后,FGF4能否恢复SOX17表达

Whether FGF4 rescues SOX17 expression after NANOG knockout

[64]部分恢复[64]
抑制ERK是否抑制GATA6表达 Whether inhibition of ERK inhibits GATA6 expression[75][70]
OCT4是否存在TFAP2C结合位点 Whether there is TFAP2C binding site in OCT4[61][61]
表2  小鼠和牛早期胚胎发育生物学机制比较
1 张毅,孙东晓,肖炜,等.影响荷斯坦牛繁殖力及犊牛健康的遗传缺陷基因研究进展[J].中国畜牧杂志,2020,56(8):1-8. DOI:10.19556/j.0258-7033.20190901-03
ZHANG Y, SUN D X, XIAO W, et al. Genetic defect genes affecting cow fertility and calf survivability in Holstein cattle[J]. Chinese Journal of Animal Science, 2020, 56(8): 1-8. (in Chinese with English abstract)
doi: 10.19556/j.0258-7033.20190901-03
2 陈希鹃,肖喜东,吴明安.影响奶牛繁殖力的因素与对策[J].中国乳业,2020(5):49-50. DOI:10.16172/j.cnki.114768.2020.05.011
CHEN X J, XIAO X D, WU M A. Influencing factors and countermeasures of dairy cow fertility[J]. China Dairy, 2020(5): 49-50. (in Chinese)
doi: 10.16172/j.cnki.114768.2020.05.011
3 MAÎTRE J L, TURLIER H, ILLUKKUMBURA R, et al. Asymmetric division of contractile domains couples cell positioning and fate specification[J]. Nature, 2016, 536(7616): 344-348. DOI: 10.1038/nature18958
doi: 10.1038/nature18958
4 PŁUSA B, PILISZEK A. Common principles of early mammalian embryo self-organisation[J]. Development, 2020, 147(14): dev183079. DOI: 10.1242/dev.183079
doi: 10.1242/dev.183079
5 JOHNSON M H, MCCONNELL J M L. Lineage allocation and cell polarity during mouse embryogenesis[J]. Seminars in Cell & Developmental Biology, 2004, 15(5): 583-597. DOI: 10.1016/j.semcdb.2004.04.002
doi: 10.1016/j.semcdb.2004.04.002
6 ABE K I, FUNAYA S, TSUKIOKA D, et al. Minor zygotic gene activation is essential for mouse preimplantation development[J]. PNAS, 2018, 115(29): E6780-E6788. DOI: 10.1073/pnas.1804309115
doi: 10.1073/pnas.1804309115
7 ABE K I, YAMAMOTO R, FRANKE V, et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3 ´ processing[J]. The EMBO Journal, 2015, 34(11): 1523-1537. DOI: 10.15252/embj.201490648
doi: 10.15252/embj.201490648
8 MEIRELLES F V, CAETANO A R, WATANABE Y F, et al. Genome activation and developmental block in bovine embryos[J]. Animal Reproduction Science, 2004, 82/83: 13-20. DOI: 10.1016/j.anireprosci.2004.05.012
doi: 10.1016/j.anireprosci.2004.05.012
9 AGHION J, GUETH-HALLONET C, ANTONY C, et al. Cell adhesion and gap junction formation in the early mouse embryo are induced prematurely by 6-DMAP in the absence of E-cadherin phosphorylation[J]. Journal of Cell Science, 1994, 107(5): 1369-1379.
10 VAN SOOM A, VAN VLAENDEREN I, MAHMOUDZADEH A R, et al. Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage[J]. Theriogenology, 1992, 38(5): 905-919.
11 JOHNSON M H, ZIOMEK C A. The foundation of two distinct cell lineages within the mouse morula[J]. Cell, 1981, 24(1): 71-80.
12 REEVE W J, ZIOMEK C A. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction[J]. Journal of Embryology and Experimental Morphology, 1981, 62: 339-350.
13 KOYAMA H, SUZUKI H, YANG X Z, et al. Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy[J]. Biology of Reproduction, 1994, 50(1): 163-170.
14 MATSUMOTO Y, INDEN M, TAMURA A, et al. Ezrin mediates neuritogenesis via down-regulation of RhoA activity in cultured cortical neurons[J]. PLoS ONE, 2014, 9(8): e105435. DOI: 10.1371/journal.pone.0105435
doi: 10.1371/journal.pone.0105435
15 LOUVET S, AGHION J, SANTA-MARIA A, et al. Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo[J]. Developmental Biology, 1996, 177(2): 568-579.
16 DOS ANJOS S A A, COSTA C P DA, ASSUMPÇÃO M E O A, et al. Inhibition of apical domain formation does not block blastocyst development in bovine embryos[J]. Repro-duction, Fertility, and Development, 2021, 33(10): 665-673. DOI: 10.1071/RD20339
doi: 10.1071/RD20339
17 STEPHENSON R O, YAMANAKA Y, ROSSANT J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin[J]. Development, 2010, 137(20): 3383-3391. DOI: 10.1242/dev.050195
doi: 10.1242/dev.050195
18 FIERRO-GONZÁLEZ J C, WHITE M D, SILVA J C, et al. Cadherin-dependent filopodia control preimplantation embryo compaction[J]. Nature Cell Biology, 2013, 15(12): 1424-1433. DOI: 10.1038/ncb2875
doi: 10.1038/ncb2875
19 RECTOR J T, GRANHOLM N H. Differential concanavalin A-induced agglutination of eight-cell preimplantation mouse embryos before and after compaction[J]. The Journal of Experimental Zoology, 1978, 203(3): 497-502.
20 CHAN C J, COSTANZO M, RUIZ-HERRERO T, et al. Hydraulic control of mammalian embryo size and cell fate[J]. Nature, 2019, 571(7763): 112-116. DOI: 10.1038/s41586-019-1309-x
doi: 10.1038/s41586-019-1309-x
21 TARKOWSKI A K, WRÓBLEWSKA J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage[J]. Journal of Embryology and Experimental Morphology, 1967, 18(1): 155-180.
22 SPINDLE A I. Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos[J]. The Journal of Experimental Zoology, 1978, 203(3): 483-489.
23 PENG J L, LI X L, ZHANG Y, et al. Par3/integrin β1 regulates embryo adhesion via changing endometrial luminal epithelium polarity[J]. Biology of Reproduction, 2021, 104(6): 1228-1238. DOI: 10.1093/biolre/ioab033
doi: 10.1093/biolre/ioab033
24 CHEN J, ZHANG M J. The Par3/Par6/aPKC complex and epithelial cell polarity[J]. Experimental Cell Research, 2013, 319(10): 1357-1364. DOI: 10.1016/j.yexcr.2013.03.021
doi: 10.1016/j.yexcr.2013.03.021
25 KOROTKEVICH E, NIWAYAMA R, COURTOIS A, et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo[J]. Developmental Cell, 2017, 40(3): 235-247. DOI: 10.1016/j.devcel.2017.01.006
doi: 10.1016/j.devcel.2017.01.006
26 YAMANAKA Y, HONMA K. Cardiovascular autonomic nervous response to postural change in 610 healthy Japanese subjects in relation to age[J]. Autonomic Neuroscience, 2006, 124(1/2): 125-131. DOI: 10.1016/j.autneu.2005.12.008
doi: 10.1016/j.autneu.2005.12.008
27 NEGRÓN-PÉREZ V M, HANSEN P J. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst[J]. Biology of Reproduction, 2018, 98(2): 170-183. DOI: 10.1093/biolre/iox172
doi: 10.1093/biolre/iox172
28 HIRATE Y, HIRAHARA S, INOUE K I, et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos[J]. Current Biology, 2013, 23(13): 1181-1194. DOI: 10.1016/j.cub.2013.05.014
doi: 10.1016/j.cub.2013.05.014
29 OH S, LEE D J, KIM T, et al. Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse[J]. Molecular and Cellular Biology, 2009, 29(23): 6309-6320. DOI: 10.1128/MCB.00551-09
doi: 10.1128/MCB.00551-09
30 NISHIOKA N, INOUE K I, ADACHI K, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass[J]. Developmental Cell, 2009, 16(3): 398-410. DOI: 10.1016/j.devcel.2009.02.003
doi: 10.1016/j.devcel.2009.02.003
31 MENG Z P, MOROISHI T, GUAN K L. Mechanisms of Hippo pathway regulation[J]. Genes & Development, 2016, 30(1): 1-17. DOI: 10.1101/gad.274027.115
doi: 10.1101/gad.274027.115
32 SASAKI H. Mechanisms of trophectoderm fate specification in preimplantation mouse development[J]. Development, Growth & Differentiation, 2010, 52(3): 263-273. DOI: 10.1111/j.1440-169X.2009.01158.x
doi: 10.1111/j.1440-169X.2009.01158.x
33 MORIN-KENSICKI E M, BOONE B N, HOWELL M, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65 [J]. Molecular and Cellular Biology, 2006, 26(1): 77-87. DOI: 10.1128/MCB.26.1.77-87.2006
doi: 10.1128/MCB.26.1.77-87.2006
34 SAITO S, YAMAMURA S, KOHRI N, et al. Requirement for expression of WW domain containing transcription regulator 1 in bovine trophectoderm development[J]. Biochem-ical and Biophysical Research Communications, 2021, 555: 140-146. DOI: 10.1016/j.bbrc.2021.03.112
doi: 10.1016/j.bbrc.2021.03.112
35 SAKURAI N, TAKAHASHI K, EMURA N, et al. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos[J]. Journal of Repro-duction and Development, 2017, 63(2): 135-142. DOI: 10.1262/jrd.2016-130
doi: 10.1262/jrd.2016-130
36 AKIZAWA H, KOBAYASHI K, BAI H, et al. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst[J]. Reproduction, 2018, 155(6): 563-571. DOI: 10.1530/REP-18-0043
doi: 10.1530/REP-18-0043
37 SAVY V, ALBERIO V, CANEL N G, et al. CRISPR-on for activation of endogenous SMARCA4 and TFAP2C expression in bovine embryos[J]. Reproduction, 2020, 159(6): 767-778. DOI: 10.1530/REP-19-0517
doi: 10.1530/REP-19-0517
38 HALL-GLENN F, LYONS K M. Roles for CCN2 in normal physiological processes[J]. Cellular and Molecular Life Sciences, 2011, 68(19): 3209-3217. DOI: 10.1007/s00018-011-0782-7
doi: 10.1007/s00018-011-0782-7
39 NISHIOKA N, YAMAMOTO S, KIYONARI H, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos[J]. Mechanisms of Development, 2008, 125(3/4): 270-283. DOI: 10.1016/j.mod.2007.11.002
doi: 10.1016/j.mod.2007.11.002
40 HOME P, SAHA B, RAY S, et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment[J]. PNAS, 2012, 109(19): 7362-7367. DOI: 10.1073/pnas.1201595109
doi: 10.1073/pnas.1201595109
41 FUJII T, MORIYASU S, HIRAYAMA H, et al. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer[J]. Cellular Reprogramming, 2010, 12(5): 617-625. DOI: 10.1089/cell.2010.0017
doi: 10.1089/cell.2010.0017
42 WU X, SONG M, YANG X, et al. Establishment of bovine embryonic stem cells after knockdown of CDX2[J]. Scientific Reports, 2016, 6: 28343. DOI: 10.1038/srep28343
doi: 10.1038/srep28343
43 GOISSIS M D, CIBELLI J B. Functional characterization of CDX2 during bovine preimplantation development in vitro [J]. Molecular Reproduction and Development, 2014, 81(10): 962-970. DOI: 10.1002/mrd.22415
doi: 10.1002/mrd.22415
44 ORSZTYNOWICZ M, LECHNIAK D, PAWLAK P, et al. Changes in chromosome territory position within the nucleus reflect alternations in gene expression related to embryonic lineage specification[J]. PLoS ONE, 2017, 12(8): e0182398. DOI: 10.1371/journal.pone.0182398
doi: 10.1371/journal.pone.0182398
45 YAMAMURA S, GODA N, AKIZAWA H, et al. Yes-associated protein 1 translocation through actin cytoskeleton organization in trophectoderm cells[J]. Developmental Biology, 2020, 468(1/2): 14-25. DOI: 10.1016/j.ydbio.2020.09.004
doi: 10.1016/j.ydbio.2020.09.004
46 WANG C, HAN X J, ZHOU Z W, et al. Wnt3a activates the WNT-YAP/TAZ pathway to sustain CDX2 expression in bovine trophoblast stem cells[J]. DNA and Cell Biology, 2019, 38(5): 410-422. DOI: 10.1089/dna.2018.4458
doi: 10.1089/dna.2018.4458
47 JEDRUSIK A, COX A, WICHER K B, et al. Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition[J]. Developmental Biology, 2015, 398(2): 147-152. DOI: 10.1016/j.ydbio.2014.12.004
doi: 10.1016/j.ydbio.2014.12.004
48 AJDUK A, BISWAS SHIVHARE S, ZERNICKA-GOETZ M. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo[J]. Developmental Biology, 2014, 392(2): 133-140. DOI: 10.1016/j.ydbio.2014.05.009
doi: 10.1016/j.ydbio.2014.05.009
49 FUNAYA S, OOGA M, SUZUKI M G, et al. Linker histone H1FOO regulates the chromatin structure in mouse zygotes[J]. FEBS Letters, 2018, 592(14): 2414-2424. DOI: 10.1002/1873-3468.13175
doi: 10.1002/1873-3468.13175
50 LI S, SHI Y, DANG Y N, et al. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J]. Biology of Reproduction, 2022, 107(6): 1425-1438. DOI: 10.1093/biolre/ioac167
doi: 10.1093/biolre/ioac167
51 LI S, SHI Y, DANG Y N, et al. NOTCH signaling pathway is required for bovine early embryonic development[J]. Biology of Reproduction, 2021, 105(2): 332-344. DOI: 10.1093/biolre/ioab056
doi: 10.1093/biolre/ioab056
52 MENCHERO S, ROLLAN I, LOPEZ-IZQUIERDO A, et al. Transitions in cell potency during early mouse development are driven by Notch[J]. eLife, 2019, 8: e42930. DOI: 10.7554/eLife.42930
doi: 10.7554/eLife.42930
53 RAYON T, MENCHERO S, NIETO A, et al. Notch and Hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst[J]. Developmental Cell, 2014, 30(4): 410-422. DOI: 10.1016/j.devcel.2014.06.019
doi: 10.1016/j.devcel.2014.06.019
54 BATISTA M R, DINIZ P, TORRES A, et al. Notch signaling in mouse blastocyst development and hatching[J]. BMC Developmental Biology, 2020, 20: 9. DOI: 10.1186/s12861-020-00216-2
doi: 10.1186/s12861-020-00216-2
55 WATANABE Y, MIYASAKA K Y, KUBO A, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm[J]. Scientific Reports, 2017, 7: 46135. DOI: 10.1038/srep46135
doi: 10.1038/srep46135
56 KUROSAKA S, ECKARDT S, MCLAUGHLIN K J. Pluripotent lineage definition in bovine embryos by Oct4 transcript localization[J]. Biology of Reproduction, 2004, 71(5): 1578-1582. DOI: 10.1095/biolreprod.104.029322
doi: 10.1095/biolreprod.104.029322
57 KHAN D R, DUBÉ D, GALL L, et al. Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo[J]. PLoS ONE, 2012, 7(3): e34110. DOI: 10.1371/journal.pone.0034110
doi: 10.1371/journal.pone.0034110
58 SIMMET K, ZAKHARTCHENKO V, PHILIPPOU-MASSIER J, et al. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts[J]. PNAS, 2018, 115(11): 2770-2775. DOI: 10.1073/pnas.1718833115
doi: 10.1073/pnas.1718833115
59 SIMMET K, KUROME M, ZAKHARTCHENKO V, et al. OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos[J]. The FASEB Journal, 2022, 36(6): e22337. DOI: 10.1096/fj.202101713RRR
doi: 10.1096/fj.202101713RRR
60 MADEJA Z E, SOSNOWSKI J, HRYNIEWICZ K, et al. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine pre-implantation development[J]. BMC Developmental Biology, 2013, 13: 32. DOI: 10.1186/1471-213X-13-32
doi: 10.1186/1471-213X-13-32
61 BERG D K, SMITH C S, PEARTON D J, et al. Trophe-ctoderm lineage determination in cattle[J]. Developmental Cell, 2011, 20(2): 244-255. DOI: 10.1016/j.devcel.2011.01.003
doi: 10.1016/j.devcel.2011.01.003
62 LUO L, SHI Y, WANG H N, et al. Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency[J]. PLoS Genetics, 2022, 18(7): e1010307. DOI: 10.1371/journal.pgen.1010307
doi: 10.1371/journal.pgen.1010307
63 ORTEGA M S, KELLEHER A M, O’NEIL E, et al. NANOG is required to form the epiblast and maintain pluripotency in the bovine embryo[J]. Molecular Reproduction and Develop-ment, 2020, 87(1): 152-160. DOI: 10.1002/mrd.23304
doi: 10.1002/mrd.23304
64 SPRINGER C, ZAKHARTCHENKO V, WOLF E, et al. Hypoblast formation in bovine embryos does not depend on NANOG[J]. Cells, 2021, 10(9): 2232. DOI: 10.3390/cells10092232
doi: 10.3390/cells10092232
65 WARZYCH E, PAWLAK P, LECHNIAK D, et al. WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo[J]. Developmental Biology, 2020, 463(1): 63-76. DOI: 10.1016/j.ydbio.2020.04.004
doi: 10.1016/j.ydbio.2020.04.004
66 FIELDS S D, HANSEN P J, EALY A D. Fibroblast growth factor requirements for in vitro development of bovine embryos[J]. Theriogenology, 2011, 75(8): 1466-1475. DOI: 10.1016/j.theriogenology.2010.12.007
doi: 10.1016/j.theriogenology.2010.12.007
67 AKIZAWA H, NAGATOMO H, ODAGIRI H, et al. Conserved roles of fibroblast growth factor receptor 2 signaling in the regulation of inner cell mass development in bovine blastocysts[J]. Molecular Reproduction and Development, 2016, 83(6): 516-525. DOI: 10.1002/mrd.22646
doi: 10.1002/mrd.22646
68 ZHANG K, HANSEN P J, EALY A D. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro [J]. Reproduction, 2010, 140(6): 815-826. DOI: 10.1530/REP-10-0190
doi: 10.1530/REP-10-0190
69 GOOSSENS K, MESTDAGH P, LEFEVER S, et al. Regula-tory microRNA network identification in bovine blastocyst development[J]. Stem Cells and Development, 2013, 22(13): 1907-1920. DOI: 10.1089/scd.2012.0708
doi: 10.1089/scd.2012.0708
70 BRINKHOF B, VAN TOL H T A, GROOT KOERKAMP M J A, et al. A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a compara-tive analysis[J]. BMC Genomics, 2015, 16: 277. DOI: 10.1186/s12864-015-1448-x
doi: 10.1186/s12864-015-1448-x
71 MCLEAN Z, MENG F L, HENDERSON H, et al. Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts[J]. Biology of Reproduction, 2014, 91(2): 49. DOI: 10.1095/biolreprod.114.120832
doi: 10.1095/biolreprod.114.120832
72 MADEJA Z E, HRYNIEWICZ K, ORSZTYNOWICZ M, et al. WNT/β-catenin signaling affects cell lineage and pluripotency-specific gene expression in bovine blastocysts: prospects for bovine embryonic stem cell derivation[J]. Stem Cells and Development, 2015, 24(20): 2437-2454. DOI: 10.1089/scd.2015.0053
doi: 10.1089/scd.2015.0053
73 XIAO Y, SOSA F, ROSS P J, et al. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts[J]. Biology Open, 2021, 10(11): bio058669. DOI: 10.1242/bio.058669
doi: 10.1242/bio.058669
74 MENG F L, FORRESTER-GAUNTLETT B, TURNER P, et al. Signal inhibition reveals JAK/STAT3 pathway as critical for bovine inner cell mass development[J]. Biology of Reproduction, 2015, 93(6): 132. DOI: 10.1095/biolreprod.115.134254
doi: 10.1095/biolreprod.115.134254
75 KUIJK E W, VAN TOL L T A, VAN DE VELDE H, et al. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos[J]. Development, 2012, 139(5): 871-882. DOI: 10.1242/dev.071688
doi: 10.1242/dev.071688
[1] 马晓娇,薛茗元,孙会增,刘建新. 泌乳中期荷斯坦奶牛瘤胃细菌群落组成与多样性变化[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 578-590.
[2] 刘群,孙妍,王菁,魏俊利,董学旺,陈浩楠. 天津地区1例中华绒螯蟹“牛奶病”病原分离、鉴定及其病理特征分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 435-444.
[3] 邱金龙,罗磊,胡冰洁,党燕娜,李爽,史延,王少华,张坤. DPPA2/DPPA4在牛着床前胚胎发育过程中的作用及机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 253-260.
[4] 刘辰晖,吴海龙,程蕾,余婕,夏瑜,向敏,胡修忠,王定发,陶弼菲. FYN结合蛋白基因rs109262355突变对中国南方荷斯坦牛泌乳性能的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 261-268.
[5] 邱金龙,史延,李爽,张坤. 牛活体采卵和体外胚胎生产技术的应用现状和展望[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 557-565.
[6] 陈一,冀飞,刘建新,王迪铭. 日粮添加硒代蛋氨酸锌对泌乳盛期奶牛泌乳性能和血浆生化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 517-524.
[7] 徐连彬,任怡飞,兰伟,侯鹏飞,刘红云. 雷帕霉素缓解奶牛乳腺上皮细胞炎症反应的作用机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 240-246.
[8] 葛莹,张雷,王欢欢,楼立峰,李庆海,黄沁,章学东. 乌骨鸡活性肽对糖尿病小鼠血液生化指标和组织病理学的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 78-85.
[9] 赵航晔,夏琛,何普明,屠幼英. 茶多酚抗炎和促外伤愈合作用及其机制[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 118-126.
[10] 何金成,张鲜,李素青,甘乾福. 环境温湿度及测量部位对奶牛红外热成像温度的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 500-508.
[11] 李倬,陈朗,姜涛,刘丽霞,张丽,王瑞,李耀东. 牦牛DQA2基因单核苷酸多态性及其生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 376-382.
[12] 应易恬,杨璟,严冰璇,邵冯金,谭勋. 乳腺炎对牛奶外泌体功能的影响:基于乳腺上皮细胞的观察[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 383-390.
[13] 刘欣,陈勇,沈立荣. 蜂王浆主蛋白对围绝经期小鼠生殖功能的保护作用[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 751-759.
[14] 汤志宏,徐宁宁,叶均安. 复合益生菌和酵母培养物对热应激奶牛生产性能、瘤胃发酵和血清抗应激指标的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 611-618.
[15] 李泳欣, 邹艺轩, 刘建新, 刘红云. 奶牛氧化应激及天然植物抗氧化提取物研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 549-554.