Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (3): 383-390    DOI: 10.3785/j.issn.1008-9209.2019.07.181
动物科学与动物医学     
乳腺炎对牛奶外泌体功能的影响:基于乳腺上皮细胞的观察
应易恬(),杨璟,严冰璇,邵冯金,谭勋()
浙江大学动物科学学院,杭州 310058
Effect of mastitis on the function of milk-derived exosomes: observations from mammary epithelial cells
Yitian YING(),Jing YANG,Bingxuan YAN,Fengjin SHAO,Xun TAN()
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1471 KB)   HTML
摘要:

通过观察乳腺炎牛奶外泌体对乳腺上皮细胞(mammary epithelial cells, MECs)活力和天然免疫功能的影响,探究外泌体在乳腺炎发病机制中的作用。MECs经热灭活的乳腺炎病原(大肠埃希菌)刺激24 h后进行转录组测序和基因本体(gene ontology, GO)富集分析,发现有21条差异表达基因富集在细胞外囊泡外泌体(GO: 0070062)这一细胞组分上,提示感染可引起宿主细胞外泌体生物学功能改变。在此基础上,采用正常牛奶来源的外泌体(N-exo)和乳腺炎牛奶来源的外泌体(M-exo)作用MECs,以培养于不含外泌体的培养基中的细胞为对照,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(methyl-thiazol-diphenyltetrazolium, MTT)法检测细胞活力,并采用实时荧光定量聚合酶链式反应检测MECs中白细胞介素8(interleukin-8, IL-8)、白细胞介素1β(interleukin-1β, IL-)和肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)的表达。结果发现:正常牛奶外泌体对MECs活力无显著影响,而乳腺炎牛奶外泌体可显著抑制MECs活力;2种来源的外泌体对IL-8TNF-α的表达均无显著影响,但正常牛奶外泌体可诱导表达IL-,而乳腺炎牛奶外泌体则缺乏诱导IL-表达的能力。上述结果提示,在乳腺感染过程中,进入牛奶中的外泌体可引起MECs活力下降,并可能参与介导有利于病原逃避免疫的微环境的形成。因而,在乳腺炎发病机制中,外泌体可能起着促进乳腺感染扩散的作用。

关键词: 牛奶外泌体乳腺上皮细胞促炎细胞因子    
Abstract:

The present study was conducted to investigate the effect of mastitic milk-derived exosomes on the viability and innate immune function of bovine mammary epithelial cells (MECs), with the aim to understand the role of exosomes in the pathogenesis of mastitis. Primary MECs were stimulated with heat-killed mastitis causing bacteria (Escherichia coli) for 24 h and subjected to RNA-sequencing and gene ontology (GO) functional classification analysis. It was found that 21 differential expression genes between pathogen-stimulated cells and normal cells were enriched in the cellular component “extracellular vesicular exosome” (GO: 0070062), suggesting that infection may alter the physiological function of exosomes derived from host cells. Based on this finding, MECs were stimulated with the exosomes derived from normal milk (N-exo) and mastitic milk (M-exo), respectively, for 24 h. The cells cultured in the exosome-depleted medium were served as the controls. The cell viability was determined by methyl-thiazol-diphenyltetrazolium (MTT) assay, and the expression of pro-inflammatory cytokines interleukin-8 (IL-8), interleukin-1β (IL-) and tumor necrosis factor-α (TNF-α) in the MECs was measured by quantitative real-time PCR (qPCR). The results showed that the exosomes derived from normal milk (N-exo) had no effect on the MEC viability, and those isolated from mastitic milk (M-exo) led to a significant reduction in the cell viability. The exosomes derived from both sources had no effect on the expression of IL-8 and TNF-α. However, the normal milk-derived exosomes significantly induced the expression of IL-; in contrast, the exosomes derived from mastitic milk failed to stimulate IL- expression. The above results suggest that the exosomes present in milk in the process of udder infection might reduce MEC viability and mediate the formation of a microenvironment favoring the immune escape of pathogens. Thus, it is very likely that exosomes contribute to the pathogenesis of mastitis by helping spread the infection in udder.

Key words: milk    exosome    mammary epithelial cell    pro-inflammatory cytokine
收稿日期: 2019-07-18 出版日期: 2020-07-17
CLC:  S 852.3  
基金资助: 国家重点研发计划(2017YFD0502200);浙江省科技厅项目(2013C32036)
通讯作者: 谭勋     E-mail: 21717097@zju.edu.cn;tanxun@zju.edu.cn
作者简介: 应易恬(https://orcid.org/0000-0001-9079-6759),E-mail:21717097@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
应易恬
杨璟
严冰璇
邵冯金
谭勋

引用本文:

应易恬,杨璟,严冰璇,邵冯金,谭勋. 乳腺炎对牛奶外泌体功能的影响:基于乳腺上皮细胞的观察[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 383-390.

Yitian YING,Jing YANG,Bingxuan YAN,Fengjin SHAO,Xun TAN. Effect of mastitis on the function of milk-derived exosomes: observations from mammary epithelial cells. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 383-390.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.07.181        http://www.zjujournals.com/agr/CN/Y2020/V46/I3/383

基因

Gene

GenBank登录号

GenBank accession No.

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

IL-8NM_173925

F: TCCAAGCTGGCTGTTGCTC

R: RTGGGGTGGAAAGGTGTGGAAT

133
IL-1βNM_853484

F: CAAGGAGAGGAAAGAGACAACA

R: GGGTGGGCGTATCACCTTT

98
TNF-αXM_005223596

F: AGGTGGCCCCTCCATCA

R: GCCATGAGGGCATTGGCATA

150
PGK1NM_001034299

F: TGCAGCTGAATTGCCAAGATG

R: CAGCCTTGATCCTCTGGTTGT

145
RPL19XM_002702167

F: TGATCATCCGGAAGCCTGTG

R: ATTGGCAGTACCCTTTCGCT

113
表1  qPCR引物信息
图1  大肠埃希菌刺激细胞和对照细胞之间的差异表达基因火山图FDR:校正后的P值;FC:差异倍数。
图2  差异表达基因中最显著富集的GO条目FC:差异倍数;FDR:校正后的P值。

基因

Gene

全称

Full name

log2 (FC)FDR

上调

Up-regulation

C3补体C3 Complement C33.914.94×10-37
STOM口形蛋白 Stomatin1.012.01×10-16
SDCBP多配体聚糖结合蛋白1 Syntenin-10.745.86×10-12
CD47白细胞表面抗原CD47 Leukocyte surface antigen CD470.499.01×10-7
DPP4二肽基肽酶4 Dipeptidyl peptidase 42.201.85×10-6
LGALS3BP半乳糖凝集素-3结合蛋白Galectin-3-binding protein0.473.03×10-5
GPRC5B

G蛋白偶联受体C家族第5族成员B

G-protein coupled receptor family C group 5 member B

0.343.09×10-3
PD-L1程序性细胞死亡配体1 Programmed cell death ligand 10.881.70×10-2

下调

Down-regulation

COL12A1胶原α-1(Ⅻ)链 Collagen alpha-1(Ⅻ) chain-1.076.16×10-19
LAMB1层粘连蛋白亚单位β-1 Laminin subunit beta-1-0.843.50×10-9
THBS1血小板反应蛋白1 Thrombospondin 1-0.658.02×10-6
ANXA6膜联蛋白A6 Annexin A6-0.521.50×10-5
FLNA细丝蛋白-A Filamin-A-0.382.43×10-4
GSN胶溶蛋白Gelsolin-0.341.69×10-3
ACTN4α-肌动蛋白-4 Alpha-actinin-4-0.313.32×10-3
ACTA2主动脉平滑肌肌动蛋白 Aortic smooth muscle actin-0.375.44×10-3
MYH9肌球蛋白重链9 Myosin heavy chain 9-0.316.56×10-3
ACTN肌动蛋白 Actin-0.308.10×10-3
SLC溶质载体Solute carrier-0.302.70×10-2
HSPG

基底膜特异性硫酸乙酰肝素蛋白多糖核心蛋白

Basement membrane-specific heparan sulfate proteoglycan core protein

-0.272.70×10-2
TLN1踝蛋白-1 Talin-1-0.253.00×10-2
表2  富集于细胞的组分“细胞外囊泡外泌体”(GO: 0070062)的差异表达基因
图3  外泌体表征A.外泌体的透射电子显微镜观察;B.外泌体标志性蛋白的免疫印迹检测。N-exo:正常牛奶外泌体;M-exo:乳腺炎牛奶外泌体。
图4  正常牛奶外泌体(N-exo)和乳腺炎牛奶外泌体(M-exo)对奶牛乳腺上皮细胞活力的影响CK:未加外泌体。***表示在P<0.001水平差异有极高度统计学意义;n=5。
图5  牛奶外泌体(N-exo和M-exo)对奶牛乳腺上皮细胞IL-1β(A)和IL-8(B)表达的影响CK:未加外泌体。**表示在P<0.01水平差异有高度统计学意义;n=3。
1 HON K W, ABU N, AB M N, et al. Exosomes as potential biomarkers and targeted therapy in colorectal cancer: a mini-review. Frontiers in Pharmacology, 2017,8:583. DOI:10.3389/fphar.2017.00583
doi: 10.3389/fphar.2017.00583
2 HORIBE S, TANAHASHI T, KAWAUCHI S, et al. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 2018,18(1):47. DOI:10.1186/s12885-017-3958-1
doi: 10.1186/s12885-017-3958-1
3 MAIA J, CAJA S, STRANO M M, et al. Exosome-based cell-cell communication in the tumor microenvironment. Frontiers in Cell and Developmental Biology, 2018,6:18. DOI:10.3389/fcell.2018.00018
doi: 10.3389/fcell.2018.00018
4 ZHANG W C, JIANG X F, BAO J H, et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Frontiers in Immunology, 2018,9:90. DOI:10.3389/fimmu.2018.00090
doi: 10.3389/fimmu.2018.00090
5 DUARTE V D S, DIAS R S, KROPINSKI A M, et al. Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Scientific Reports, 2018,8(1):6845. DOI:10.1038/s41598-018-24896-w
doi: 10.1038/s41598-018-24896-w
6 JOHNZON C F, DAHLBERG J, GUSTAFSON A M, et al. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach. Frontiers in Immunology, 2018,9:1487. DOI:10.3389/fimmu.2018.01487
doi: 10.3389/fimmu.2018.01487
7 HATA T, MURAKAMI K, NAKATANI H, et al. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochemical and Biophysical Research Communi-cations, 2010,396(2):528-533. DOI:10.1016/j.bbrc.2010.04.135
doi: 10.1016/j.bbrc.2010.04.135
8 KOH Y Q, PEIRIS H N, VASWANI K, et al. Characterization of exosomes from body fluids of dairy cows. Journal of Animal Science, 2017,95(9):3893-3904. DOI:10.2527/jas2017.1727
doi: 10.2527/jas2017
9 RAINARD P, RIOLLET C. Innate immunity of the bovine mammary gland. Veterinary Research, 2006,37(3):369-400. DOI:10.1051/vetres:2006007
doi: 10.1051/vetres:2006007
10 GUNTHER J, KOY M, BERTHOLD A, et al. Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Veterinary Research, 2016,47:22. DOI:10.1186/s13567-016-0307-3
doi: 10.1186/s13567-016-0307-3
11 REDDICK L E, ALTO N M. Bacteria fighting back: How pathogens target and subvert the host innate immune system. Molecular Cell, 2014,54(2):321-328. DOI:10.1016/j.molcel.2014.03.010
doi: 10.1016/j.molcel
12 SCHOREY J S, HARDING C V. Extracellular vesicles and infectious diseases: new complexity to an old story. Journal of Clinical Investigation, 2016,126(4):1181-1189. DOI:10.1172/jci81132
doi: 10.1172/
13 GUNTHER J, KOCZAN D, YANG W, et al. Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Veterinary Research, 2009,40(4):31. DOI:10.1051/vetres/2009014
doi: 10.1051/vetres/2009014
14 FU Y H, ZHOU E, LIU Z C, et al. Staphylococcus aureus and Escherichia coli elicit different innate immune responses from bovine mammary epithelial cells. Veterinary Immunology and Immunopathology, 2013,155(4):245-252. DOI:10.1016/j.vetimm.2013.08.003
doi: 10.1016/j.vetimm.2013.08.003
15 REINHARDT T A, SACCO R E, NONNECKE B J, et al. Bovine milk proteome: quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. Journal of Proteomics, 2013,82:141-154. DOI:10.1016/j.jprot.2013.02.013
doi: 10.1016/j.jprot.2013.02
16 BROWN J A, DORFMAN D M, MA F R, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. Journal of Immunology, 2003,170(3):1257-1266. DOI:10.4049/jimmunol.170.3.1257
doi: 10.4049/jimmunol.170.3.1257
17 DIAZ-ALVAREZ L, ORTEGA E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators of Inflammation, 2017,2017:9247574. DOI:10.1155/2017/9247574
doi: 10.1155/2017/9247574
18 ADMYRE C, JOHANSSON S M, QAZI K R, et al. Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology, 2007,179(3):1969-1978. DOI:10.4049/jimmunol.179.3.1969
doi: 10.4049/jimmunol.179.3.1969
19 ZBINDEN C, STEPHAN R, JOHLER S, et al. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One, 2014,9(1):e87374. DOI:10.1371/journal.pone.0087374
doi: 10.1371/journal.pone.0087374
20 ATHMAN J J, WANG Y, MCDONALD D J, et al. Bacterial membrane vesicles mediate the release of Mycobacterium tuberculosis lipoglycans and lipoproteins from infected macrophages. Journal of Immunology, 2015,195(3):1044-1053. DOI:10.4049/jimmunol.1402894
doi: 10.4049/jimmunol.1402894
[1] 杜振昆 郭军庆 张妙仙等. 牛奶样品布氏杆菌套式PCR检测方法的建立[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 169-174.