Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (1): 78-85    DOI: 10.3785/j.issn.1008-9209.2021.04.122
动物科学与动物医学     
乌骨鸡活性肽对糖尿病小鼠血液生化指标和组织病理学的影响
葛莹(),张雷,王欢欢,楼立峰,李庆海,黄沁,章学东()
杭州市农业科学研究院,杭州 310024
Effects of bioactive peptides from black-bone chicken on blood biochemical parameters and histopathology in diabetic mice
Ying GE(),Lei ZHANG,Huanhuan WANG,Lifeng LOU,Qinghai LI,Qin HUANG,Xuedong ZHANG()
Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
 全文: PDF(3490 KB)   HTML
摘要:

为了观察乌骨鸡活性肽对糖尿病小鼠的功能作用,本研究通过酶解、离心、超滤和冷冻干燥等步骤,从乌骨鸡胸肌中制备得到分子量小于5 kDa的活性肽;并将链脲佐菌素(streptozotocin, STZ)诱导的糖尿病小鼠随机分成低剂量组、高剂量组、药物组和阳性对照组(n=10),分别灌服100 mg/kg乌骨鸡活性肽、400 mg/kg乌骨鸡活性肽、30 mg/kg阿卡波糖和生理盐水安慰剂;另设正常小鼠对照组并灌服生理盐水。测定各处理组的起始体质量和空腹血糖水平,以及连续灌服30 d后的终末体质量和血液生化指标,并切片观察组织病变情况。结果表明:试验终末,阳性对照组的体质量显著降低(P<0.05),而其他4组均增加。与阳性对照组相比,低剂量组、高剂量组和药物组的终末空腹血糖水平较低(高剂量组和药物组,P<0.05);总胆固醇、低密度脂蛋白胆固醇水平较低,而高密度脂蛋白胆固醇水平较高(高剂量组,P<0.05);超氧化物歧化酶活性较高,而丙二醛含量较低(高剂量组,P<0.05)。低剂量组、高剂量组和药物组的胰岛素水平和胰岛面积显著高于阳性对照组(P<0.05);3组肝、肾指数高于正常对照组,但细胞肿胀、空泡化等病理变化少于阳性对照组。综上所述,乌骨鸡活性肽具有一定的降血糖、降血脂和保护胰腺、肝、肾等器官组织的功效,且400 mg/kg乌骨鸡活性肽的灌服效果优于100 mg/kg。

关键词: 乌骨鸡活性肽链脲佐菌素糖尿病小鼠降血糖作用    
Abstract:

In order to observe the effects of bioactive peptides from black-bone chicken on diabetic mice, the peptide was extracted from the breast muscles of black-bone chicken, through the steps of enzymolysis, centrifugation, ultrafiltration and freeze-drying, whose molecular mass is less than 5 kDa. Then the diabetic mice induced by streptozotocin (STZ) were randomly divided into low-dose, high-dose, drug and positive control groups (n=10), fed with 100 mg/kg bioactive peptide, 400 mg/kg bioactive peptide, 30 mg/kg acarbose and saline placebo, respectively. Besides, the normal control group was set and fed with saline. The initial body mass, fasting blood glucose level, and the final body mass, biochemical parameters after 30 d of continuous feeding were measured. Meanwhile, the pathological changes were observed. The results showed that at the end of the experiment, the body mass of positive control group decreased significantly (P<0.05), whereas those of the other four groups increased. Compared with the positive control group, the low-dose, high-dose and drug groups had lower final fasting blood glucose levels (high-dose and drug groups, P<0.05), lower total cholesterol level and low density lipoprotein cholesterol level, but higher high density lipoprotein cholesterol level (high-dose group, P<0.05); higher superoxide dismutase activity, but lower malondialdehyde content (high-dose group, P<0.05). In the low-dose, high-dose and drug groups, insulin level and islet area were significantly higher than those in the positive control group (P<0.05); their liver and renal indexes were higher than those in the normal control group, but the pathological changes such as cell swelling and vacuolation were less than those in the positive control group. In conclusion, bioactive peptides from black-bone chicken have certain effects on hypoglycemia, hypolipidemia and tissue-protection of the pancreas, liver and kidney. In addition, the feeding dose of 400 mg/kg has better effect than that of 100 mg/kg.

Key words: black-bone chicken    bioactive peptide    streptozotocin    diabetic mice    hypoglycemic action
收稿日期: 2021-04-12 出版日期: 2022-03-04
CLC:  S 831  
基金资助: 杭州市农业与社会发展科研主动设计项目(20162012A04)
通讯作者: 章学东     E-mail: geying1122@126.com;bigzhengliang@hotmail.com
作者简介: 葛莹(https://orcid.org/0000-0002-6817-167X),E-mail:geying1122@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
葛莹
张雷
王欢欢
楼立峰
李庆海
黄沁
章学东

引用本文:

葛莹,张雷,王欢欢,楼立峰,李庆海,黄沁,章学东. 乌骨鸡活性肽对糖尿病小鼠血液生化指标和组织病理学的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 78-85.

Ying GE,Lei ZHANG,Huanhuan WANG,Lifeng LOU,Qinghai LI,Qin HUANG,Xuedong ZHANG. Effects of bioactive peptides from black-bone chicken on blood biochemical parameters and histopathology in diabetic mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 78-85.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.04.122        https://www.zjujournals.com/agr/CN/Y2022/V48/I1/78

组别

Group

数量

Number

体质量

Body mass/g

空腹血糖水平

Fasting blood glucose level/(mmol/L)

起始

Initial

终末

Final

起始

Initial

终末

Final

P

P value

起始

Initial

终末

Final

P

P value

低剂量组 Low-dose group10928.84±3.50b29.64±3.66bc0.68427.30±6.80a19.31±7.53ab0.014
高剂量组 High-dose group101028.53±2.24b30.29±2.37bc0.94728.86±4.78a17.16±8.07b0.001
药物组 Drug group101030.37±2.45ab32.25±4.37ab0.87324.12±5.97a16.25±6.15b0.005
阳性对照组 Positive control group10728.44±2.71b25.71±3.12c0.04325.26±7.26a25.81±4.22a0.577
正常对照组 Normal control group101033.63±3.53a35.22±2.44a0.8717.81±1.24b7.26±0.95c0.140
表1  各组小鼠的起始、终末体质量和空腹血糖水平

组别

Group

甘油三酯

TG

总胆固醇

TC

低密度脂蛋白胆固醇

LDL-C

高密度脂蛋白胆固醇

HDL-C

低剂量组 Low-dose group2.03±0.72ab5.37±0.58ab0.74±0.19ab2.34±0.33ab
高剂量组 High-dose group1.85±0.67ab4.82±0.88b0.58±0.21bc2.66±0.46a
药物组 Drug group1.73±0.29b4.74±0.48b0.63±0.16abc2.19±0.42ab
阳性对照组 Positive control group2.67±0.80a5.98±0.80a0.86±0.27a1.63±0.48b
正常对照组 Normal control group1.40±0.41b4.50±0.71b0.47±0.12c2.50±0.79a
表2  各组小鼠的血脂指标 (mmol/L)

组别

Group

超氧化物歧化酶

SOD/(U/mL)

丙二醛

MDA/(nmol/mL)

低剂量组 Low-dose group589.12±99.23a15.31±5.54ab
高剂量组 High-dose group606.24±106.07a12.22±3.60b
药物组 Drug group592.38±107.49a13.70±4.88ab

阳性对照组

Positive control group

446.52±77.76b19.79±7.28a

正常对照组

Normal control group

614.38±91.15a12.00±3.44b
表3  各组小鼠的血清抗氧化指标
图1  乌骨鸡活性肽对糖尿病小鼠胰腺的影响A、B、C、D、E分别为低剂量组、高剂量组、药物组、阳性对照组及正常对照组的胰腺切片。*表示与其他处理组相比在P<0.05水平差异有统计学意义。
图2  乌骨鸡活性肽对糖尿病小鼠肝脏的影响A、B、C、D、E分别为低剂量组、高剂量组、药物组、阳性对照组及正常对照组的肝脏切片。*表示阳性对照组与正常对照组间在 P<0.05水平差异有统计学意义。
图3  乌骨鸡活性肽对糖尿病小鼠肾脏的影响A、B、C、D、E分别为低剂量组、高剂量组、药物组、阳性对照组及正常对照组的肾脏切片。*表示与其他处理组相比在P<0.05水平差异有统计学意义。
1 SCHWARTZ S S , EPSTEIN S , CORKEY B E , et al . The time is right for a new classification system for diabetes: rationale and implications of the β-cell-centric classification schema[J]. Diabetes Care, 2016, 39(2): 179-186. DOI:10.2337/dc15-1585
doi: 10.2337/dc15-1585
2 KRENTZ A J , BAILEY C J . Oral antidiabetic agents: current role in type 2 diabetes mellitus[J]. Drugs, 2005, 65(3): 385-411. DOI:10.2165/00003495-200565030-00005
doi: 10.2165/00003495-200565030-00005
3 ADISAKWATTANA S , LERDSUWANKIJ O , POPUTTACHAI U , et al . Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase[J]. Plant Foods for Human Nutrition, 2011, 66(2): 143-148. DOI:10.1007/s 11130-011-0226-4
doi: 10.1007/s
4 RAJASEKHAR M D , BADRI K R , KUMAR K V , et al . Isolation and characterization of a novel antihyperglycemic protein from the fruits of Momordica cymbalaria [J]. Journal of Ethnopharmacology, 2010, 128(1): 58-62. DOI:10.1016/j.jep.2009.12.025
doi: 10.1016/j.jep.2009.12.025
5 AHMAD Z , ZAMHURI K F , YAACOB A , et al . In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd) [J]. Molecules, 2012, 17(8): 9631-9640. DOI:10.3390/molecules17089631
doi: 10.3390/molecules17089631
6 郭渝南 .糖尿病病因病机探识[J].实用中西医结合临床,2002,2(2):52-54. DOI:10.3969/j.issn.1671-4040.2002.02.051
GUO Y N . Discussion of cause and mechanism of diabetes[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine, 2002, 2(2): 52-54. (in Chinese)
doi: 10.3969/j.issn.1671-4040.2002.02.051
7 KITTS D D , WEILER K . Bioactive proteins and peptides from food sources: applications of bioprocesses used in isolation and recovery[J]. Current Pharmaceutical Design, 2003, 9(16): 1309-1323. DOI:10.2174/1381612033454883
doi: 10.2174/1381612033454883
8 KORHONEN H , PIHLANTO A . Food-derived bioactive peptides-opportunities for designing future foods[J]. Current Pharmaceutical Design, 2003, 9(16): 1297-1308. DOI:10.2174/1381612033454892
doi: 10.2174/1381612033454892
9 SAMARANAYAKA A G P , LI-CHAN E C Y . Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications[J]. Journal of Functional Foods, 2011, 3(4): 229-254. DOI:10.1016/j.jff.2011.05.006
doi: 10.1016/j.jff.2011.05.006
10 CHEN F F , WANG J T , ZHANG L X , et al . Oleanolic acid derivative DKS26 exerts antidiabetic and hepatoprotective effects in diabetic mice and promotes glucagon-like peptide-1 secretion and expression in intestinal cells[J]. British Journal of Pharmacology, 2017, 174(17): 2912-2928. DOI:10.1111/bph.13921
doi: 10.1111/bph.13921
11 邓燕群 .牡蛎活性肽及其复合物降血糖作用的研究[D].广东,汕头:汕头大学,2015:32.
DENG Y Q . Study on glycosidase inhibitory activity of oyster peptide and its compounds[D]. Shantou, Guangdong: Shantou University, 2015: 32. (in Chinese with English abstract)
12 FURMAN B L . Streptozotocin-induced diabetic models in mice and rats[J]. Current Protocols in Pharmacology, 2015, 70: 5.47.1-5.47.20. DOI:10.1002/0471141755.ph0547s70
doi: 10.1002/0471141755.ph0547s70
13 HOFFMANN J , SPENGLER M . Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients: the essen study[J]. Diabetes Care, 1994, 17(6): 561-566. DOI:10.2337/diacare.17.6.561
doi: 10.2337/diacare.17.6.561
14 MA R C W . Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes?[J]. Lancet Diabetes and Endocrinology, 2014, 2(1): 6-7. DOI:10.1016/S2213-8587(13)70107-4
doi: 10.1016/S2213-8587(13)70107-4
15 WU H H , LIU J , LOU Q Q , et al . Comparative assessment of the efficacy and safety of acarbose and metformin combined with premixed insulin in patients with type 2 diabetes mellitus[J]. Medicine, 2017, 96(35): e7533. DOI:10 .1097/MD.0000000000007533
doi: 10
16 XIA Z H , CHEN W B , SHI L , et al . The underlying mechanisms of curcumin inhibition of hyperglycemia and hyperlipidemia in rats fed a high-fat diet combined with STZ treatment[J]. Molecules, 2020, 25(2): 271. DOI:10.3390/molecules25020271
doi: 10.3390/molecules25020271
17 JAISWAL M , SCHINSKE A , POP-BUSUI R , et al . Lipids and lipid management in diabetes[J]. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28(3): 325-338. DOI:10.1016/j.beem.2013.12.001
doi: 10.1016/j.beem.2013.12.001
18 ITO F , SONO Y , ITO T . Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation[J]. Antioxidants, 2019, 8(3): 72. DOI:10.3390/antiox8030072
doi: 10.3390/antiox8030072
19 林霖,田颖刚,谢明勇,等 .乌骨鸡活性肽组成成分及体外抗氧化活性研究[J].食品科学,2007,28(10):41-45. DOI:10.3321/j.issn:1002-6630.2007.10.004
LIN L , TIAN Y G , XIE M Y , et al . Research on antioxidant activity in vitro and molecular weight distribution of black-bone silky fowl bioactive peptides[J]. Food Science, 2007, 28(10): 41-45. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6630.2007.10.004
20 LIU J H , HUANG Y S , TIAN Y G , et al . Purification and identification of novel antioxidative peptide released from Black-bone silky fowl (Gallus gallus domesticus Brisson) [J]. European Food Research and Technology, 2013, 237(2): 253-263. DOI:10.1007/s00217-013-1987-9
doi: 10.1007/s00217-013-1987-9
21 田颖刚,黄宇玫,张丽,等 .丝羽乌骨鸡活性肽对顺铂所致小鼠肾损伤的防护作用[J].中国家禽,2015,37(14):25-29. DOI:10.16372/j.issn.1004-6364.2015.14.006
TIAN Y G , HUANG Y M , ZHANG L , et al . Protective effects of bioactive peptides from silky chicken against cisplatin-induced kidney injury in mice[J]. China Poultry, 2015, 37(14): 25-29. (in Chinese with English abstract)
doi: 10.16372/j.issn.1004-6364.2015.14.006
22 葛莹,张乐,王欢欢,等 .肌肽的优化测定及不同肤色鸡的肌肽含量分析[J].中国家禽,2020,42(7):59-63. DOI:10.16372/j.issn.1004-6364.2020.07.012
GE Y , ZHANG L , WANG H H , et al . Optimal determination of carnosine and analysis of carnosine content between black-skin chicken and white-skin chicken at different ages[J]. China Poultry, 2020, 42(7): 59-63. (in Chinese with English abstract)
doi: 10.16372/j.issn.1004-6364.2020.07.012
[1] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[2] 黄河儒, 王姗姗,倪晓锋,陈日萍,张佳莉,陈翼翔,沈生荣. 雨生红球藻提取物对糖尿病小鼠血糖及血脂水平的干预和调节作用[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 641-649.
[3] 谭 兵, 王红宁, 张 毅, 樊汶樵. 超鸡粒细胞-巨噬细胞集落刺激因子的克隆与真核表达[J]. 浙江大学学报(农业与生命科学版), 2009, 35(5): 516-522.