Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 825-839    DOI: 10.3785/j.issn.1008-9209.2022.10.091
食品科学     
基于广泛靶向代谢组学结合高效液相色谱法分析‘紫娟’和‘迎霜’茶树花代谢物差异
朱婉1(),吴颖2(),黎晓湘1,张龙杰3,梁月荣1,陆建良1,郑新强1()
1.浙江大学农业与生物技术学院茶叶研究所, 浙江 杭州 310058
2.宁波市海曙区农业技术管理服务站, 浙江 宁波 315012
3.宁波黄金韵茶业科技有限公司, 浙江 宁波 315412
Analysis of differential metabolites between ‘Zijuan’ and ‘Yingshuang’ tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography
Wan ZHU1(),Ying WU2(),Xiaoxiang LI1,Longjie ZHANG3,Yuerong LIANG1,Jianliang LU1,Xinqiang ZHENG1()
1.Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Agricultural Technology Management and Service Station of Haishu District in Ningbo, Ningbo 315012, Zhejiang, China
3.Ningbo Huangjinyun Tea Science and Technology Co. , Ltd. , Ningbo 315412, Zhejiang, China
 全文: PDF(5972 KB)   HTML
摘要:

为探究茶树品种‘紫娟’和‘迎霜’茶树花之间的风味差异,基于超高效液相色谱-串联质谱法的广泛靶向代谢组学技术,检测2个品种茶树花轻发酵样品中非挥发性代谢物的丰度,并对其进行筛选和鉴定;参照茶叶感官审评方法评价2个样品茶树花各项审评因子,采用高效液相色谱法和比色法检测儿茶素类、黄酮类等滋味成分含量。结果表明:‘紫娟’茶树花滋味甘和较鲜、略苦微涩,‘迎霜’茶树花滋味甘和、微苦略涩。2个品种间有酚酸类(56种)、黄酮类(46种)、脂质(26种)、鞣质(19种)、氨基酸及其衍生物(17种)等219种显著差异代谢物。进一步对其代谢通路进行注释分析发现,氨基酸类物质相关代谢途径以及黄酮和黄酮醇代谢途径是‘紫娟’和‘迎霜’茶树花之间的主要差异代谢途径。此外,‘紫娟’和‘迎霜’茶树花中黄酮类总量、花青素总量、儿茶素类和部分生物碱含量差异显著(P<0.05),可溶性糖含量差异不显著。上述结果初步说明了黄酮类化合物使茶树花的滋味具有一定苦涩度,相较于‘迎霜’,‘紫娟’茶树花中部分氨基酸及其衍生物含量上调是其茶汤滋味较鲜的主要原因。

关键词: 茶树花广泛靶向代谢组学‘紫娟’‘迎霜’差异代谢物    
Abstract:

To explore the differences in flavor between flowers of ‘Zijuan’ and ‘Yingshuang’ tea varieties, the abundance of non-volatile metabolites in two light fermented tea flowers was tested, and the metabolites identified via widely targeted metabolomic technology based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The evaluation factors were evaluated by tea sensory evaluation methods and the contents of taste components, such as catechins and flavonoids, were detected by high performance liquid chromatography and colorimetric method. The results showed that ‘Zijuan’ tea flowers tasted sweet and fresh, and a little bitter and slightly astringent, while ‘Yingshuang’ tea flowers tasted sweet, slightly bitter and a little astringent. There were 219 kinds of significantly differential metabolites, including phenolic acids (56 kinds), flavonoids (46 kinds), lipids (26 kinds), tannins (19 kinds), amino acids and their derivatives (17 kinds) and others between the two varieties. Furthermore, metabolic pathway annotations revealed that amino acid-related metabolic pathways and flavone and flavonol metabolism pathways were the main differential metabolic pathways between ‘Zijuan’ and ‘Yingshuang’ tea flowers. In addition, the total contents of flavonoids and anthocyanins and the contents of catechins and some alkaloids between ‘Zijuan’ and ‘Yingshuang’ tea flowers were significantly different (P<0.05), while the differences in the soluble sugar contents were not significant. The above results preliminarily showed that the flavonoids made the taste of tea flowers had a certain degree of bitterness and astringency, while compared with those in ‘Yingshuang’, the increase of contents of some amino acids and their derivatives in ‘Zijuan’ tea flowers was the main reason for its fresh taste.

Key words: tea flowers    widely targeted metabolomics    ‘Zijuan’    ‘Yingshuang’    differential metabolites
收稿日期: 2022-10-09 出版日期: 2023-12-25
CLC:  TS272.5  
基金资助: 浙江省宁波市“科技创新2025”重大专项(2019B10022);国家现代农业产业技术体系建设专项(CARS-19)
通讯作者: 郑新强     E-mail: 22016175@zju.edu.cn;76460140@qq.com;xqzheng@zju.edu.cn
作者简介: 朱婉(https://orcid.org/0000-0003-2557-4724),E-mail:22016175@zju.edu.cn|吴颖(https//:orcid.org/0000-0003-2160-3946),E-mail:76460140@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱婉
吴颖
黎晓湘
张龙杰
梁月荣
陆建良
郑新强

引用本文:

朱婉,吴颖,黎晓湘,张龙杰,梁月荣,陆建良,郑新强. 基于广泛靶向代谢组学结合高效液相色谱法分析‘紫娟’和‘迎霜’茶树花代谢物差异[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 825-839.

Wan ZHU,Ying WU,Xiaoxiang LI,Longjie ZHANG,Yuerong LIANG,Jianliang LU,Xinqiang ZHENG. Analysis of differential metabolites between ‘Zijuan’ and ‘Yingshuang’ tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 825-839.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.10.091        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/825

样品

Sample

外形

Appearance

叶底

Infused leaves

汤色

Infusion color

香气

Aroma

滋味

Taste

ZJF

花朵完整,花瓣浅黄带浅绿,花托微黄,

花萼绿翠,较匀整

成朵透亮、花蕊完整,

花萼边缘略有红边

黄明亮蜜香稍闷甘和较鲜、略苦微涩
YSF

花朵完整,花瓣象牙白,花托稍带嫩绿,

花萼深绿,较匀整

成朵透亮、花蕊完整杏黄明亮略有花香甘和、微苦略涩
表1  ZJF和YSF感官审评结果
图1  质控样本的TIC重叠图A.正离子模式;B.负离子模式。

指标

Index

PC1PC2PC3PC4PC5

特征值

Eigenvalue

613.0989.6571.0366.7056.54

累积贡献率

Cumulative contribution

rate/%

68.3578.3486.2693.70100.00

方差占比

Proportion of variance/%

68.359.997.927.446.30
表2  ZJF和YSF代谢物的PCA结果
图2  ZJF和YSF中鉴定到的代谢物类别括号中数字为该类代谢物数量占所鉴定到的897种代谢物的百分比。
图3  ZJF和YSF代谢物的多元统计分析结果A. PCA得分图;B. OPLS-DA模型图。
图4  ZJF和YSF的显著差异代谢物图谱A.显著差异代谢物聚类树;B.显著差异代谢物火山图。图例中颜色标尺为代谢物响应值(相对含量)进行-1.5~1.5标准化处理后得到的数值(红色表示代谢物相对含量上调,绿色表示代谢物相对含量下调)。
图5  ZJF和YSF中219种显著差异代谢物饼图括号中数字为该类差异代谢物数量占ZJF和YSF中219种显著差异代谢物的百分比。
图6  ZJF和YSF中显著差异代谢物的KEGG通路富集图富集因子表示差异表达的代谢物中在对应通路中的个数与该通路中注释到的代谢物总数的比值。
  
  
图7  YSF和ZJF中的主要滋味差异代谢物A.黄酮类;B.氨基酸及其衍生物;C.酚酸类;D.鞣质。图例中颜色标尺为对代谢物响应值(相对含量)进行0~1标准化处理后得到的数值。
化学组分 Chemical componentZJFYSF
GC/(mg/g)1.54±0.16b2.52±0.10a
EGC/(mg/g)13.92±0.33a11.10±0.36b
C/(mg/g)1.10±0.13a0.77±0.05b
EC/(mg/g)8.83±0.21a4.57±0.04b
非酯型儿茶素 Non-ester catechins/(mg/g)25.39±0.30a18.96±0.20b
EGCG/(mg/g)17.93±1.02b39.22±2.35a
GCG/(mg/g)0.44±0.02b0.75±0.06a
ECG/(mg/g)10.91±0.40b19.70±1.22a
CG/(mg/g)0.24±0.03a0.20±0.03a
酯型儿茶素 Ester catechins/(mg/g)29.52±0.76b59.87±3.65a
酯型儿茶素/非酯型儿茶素比值 Ratio of ester catechins to non-ester catechins1.16±0.02b3.16±0.16a
可可碱 Theobromine/(mg/g)0.16±0.00b0.28±0.01a
茶碱 Theophylline/(mg/g)0.21±0.00a0.18±0.01b
咖啡碱 Caffeine/(mg/g)8.88±0.19a8.63±0.68a
黄酮类 Flavonoids/(mg/g)111.89±7.39a79.90±2.43b
可溶性糖 Soluble sugar/(mg/g)264.36±16.86a274.22±4.43a
花青素 Anthocyanin/(μmol/g)152.51±6.38a132.64±1.52b
表3  ZJF和YSF中的滋味化学组分含量
1 罗军武,施兆鹏.茶树种质资源亲缘关系的研究进展[J].生命科学研究,2000,4():102-107.
LUO J W, SHI Z P. Advances in the study on the genetic relationships of tea germplasm resource[J]. Life Science Research, 2000, 4( ): 102-107. (in Chinese with English abstract)
2 张欣,刘帅,赵洁,等.乌龙茶品质的研究进展[J].中国食物与营养,2020,26(9):21-25. DOI:10.19870/j.cnki.11-3716/ts.2020.09.003
ZHANG X, LIU S, ZHAO J, et al. Research progress on the quality of oolong tea[J]. Food and Nutrition in China, 2020, 26(9): 21-25. (in Chinese with English abstract)
doi: 10.19870/j.cnki.11-3716/ts.2020.09.003
3 王新超,王璐,郝心愿,等.茶树遗传育种研究“十三五”进展及“十四五”发展方向[J].中国茶叶,2021,43(9):50-57. DOI:10.3969/j.issn.1000-3150.2021.09.007
WANG X C, WANG L, HAO X Y, et al. Tea genetics and breeding progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 50-57. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3150.2021.09.007
4 郑新强,李明,张龙杰,等.紫化系茶树品种选育课题研究进展[J].茶叶,2021,47(4):195-199. DOI:10.3969/j.issn.0577-8921.2021.04.001
ZHENG X Q, LI M, ZHANG L J, et al. Research advances in breeding tea cultivars with purple leaves[J]. Journal of Tea, 2021, 47(4): 195-199. (in Chinese with English abstract)
doi: 10.3969/j.issn.0577-8921.2021.04.001
5 王开荣,梁月荣,李明,等.白化和紫化茶种质资源开发进展[J].中国茶叶加工,2015(3):5-8. DOI:10.15905/j.cnki.33-1157/ts.2015.03.001
WANG K R, LIANG Y R, LI M, et al. Progress in the development of germplasm resources for albino and purple tea cultivars[J]. China Tea Processing, 2015(3): 5-8. (in Chinese with English abstract)
doi: 10.15905/j.cnki.33-1157/ts.2015.03.001
6 翁蔚.茶(Camellia sinensis)花主要生物活性成分研究及应用展望[D].浙江,杭州:浙江大学,2004.
WENG W. Study on the main bioactive compounds of tea (Camellia sinensis) flower and its application perspectives[D]. Hangzhou, Zhejiang: Zhejiang University, 2004. (in Chinese with English abstract)
7 CHEN Y Y, ZHOU Y, ZENG L T, et al. Occurrence of functional molecules in the flowers of tea (Camellia sinensis) plants: evidence for a second resource[J]. Molecules, 2018, 23(4): 790. DOI: 10.3390/molecules23040790
doi: 10.3390/molecules23040790
8 黄艳,商虎,朱嘉威,等.加工工艺对茶树花品质及抗氧化活性的影响[J].食品科学,2020,41(11):165-170. DOI:10.7506/spkx1002-6630-20190505-018
HUANG Y, SHANG H, ZHU J W, et al. Effects of processing treatments on quality and antioxidant activity of tea plant flower[J]. Food Science, 2020, 41(11): 165-170. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20190505-018
9 石兴云,刘伊琦,念波,等.云南茶树花茶加工工艺与化学成分研究[J].保鲜与加工,2019,19(3):70-77. DOI:10.3969/j.issn.1009-6221.2019.03.011
SHI X Y, LIU Y Q, NIAN B, et al. Study on processing technology and chemical compounds of flower tea of Camellia sinensis in Yunnan[J]. Storage and Process, 2019, 19(3): 70-77. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-6221.2019.03.011
10 CHEN D, CHEN G J, SUN Y, et al. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: a review[J]. Food Research International, 2020, 137: 109584. DOI: 10.1016/j.foodres.2020.109584
doi: 10.1016/j.foodres.2020.109584
11 WANG L, XU R J, HU B, et al. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction[J]. Food Chemistry, 2010, 123(4): 1259-1266. DOI: 10.1016/j.foodchem.2010.05.063
doi: 10.1016/j.foodchem.2010.05.063
12 YANG Z Y, DONG F, BALDERMANN S, et al. Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs[J]. Journal of the Science of Food and Agriculture, 2012, 92(10): 2128-2132. DOI: 10.1002/jsfa.5596
doi: 10.1002/jsfa.5596
13 SHEN X, SHI L Z, PAN H B, et al. Identification of triterpenoid saponins in flowers of four Camellia sinensis cultivars from Zhejiang Province: differences between cultivars, developmental stages, and tissues[J]. Industrial Crops and Products, 2017, 95: 140-147. DOI: 10.1016/j.indcrop.2016.10.008
doi: 10.1016/j.indcrop.2016.10.008
14 李金.茶树花黄酮提取分离的参数优化与品种间的差异性研究[D].浙江,杭州:浙江大学,2019.
LI J. Research on optimization for extraction and isolation of tea flower flavones and variances of tea flower flavones among various cultivars[D]. Hangzhou, Zhejiang: Zhejiang University, 2019. (in Chinese with English abstract)
15 刘丹.茶树花生长过程中内含成分变化及茶树花茯砖茶开发研究[D].湖南,长沙:湖南农业大学,2019.
LIU D. Study on the changes of ingredients in the growth process of tea blossom and the development of tea blossom fu brick tea[D]. Changsha, Hunan: Hunan Agricultural University, 2019. (in Chinese with English abstract)
16 田菁,王宇哲,闫世雄,等.代谢组学技术发展及其在农业动植物研究中的应用[J].遗传,2020,42(5):452-465. DOI:10.16288/j.yczz.19-287
TIAN J, WANG Y Z, YAN S X, et al. Metabolomics technology and its applications in agricultural animal and plant research[J]. Hereditas, 2020, 42(5): 452-465. (in Chinese with English abstract)
doi: 10.16288/j.yczz.19-287
17 ROTHENBERG D O, YANG H J, CHEN M B, et al. Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis)[J]. Molecules, 2019, 24(6): 1064. DOI: 10.3390/molecules24061064
doi: 10.3390/molecules24061064
18 ZHOU C B, MEI X, ROTHENBERG D O, et al. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower[J]. Molecules, 2020, 25(1): 190. DOI: 10.3390/molecules25010190
doi: 10.3390/molecules25010190
19 李明超,刘莹,杨洋,等.紫娟茶主要化学成分及药理活性研究进展[J].食品安全质量检测学报,2019,10(8):2293-2299. DOI:10.3969/j.issn.2095-0381.2019.08.032
LI M C, LIU Y, YANG Y, et al. Research advance in chemical constituents and pharmacological activities of Zijuan tea[J]. Journal of Food Safety & Quality, 2019, 10(8): 2293-2299. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-0381.2019.08.032
20 杨亚军,梁月荣.中国无性系茶树品种志[M].上海:上海科学技术出版社,2014. DOI:10.1093/obo/9780199920082-0110
YANG Y J, LIANG Y R. Records of Clonal Tea Varieties in China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2014. (in Chinese)
doi: 10.1093/obo/9780199920082-0110
21 LIANG H L, LIANG Y R, DONG J J, et al. Tea extraction methods in relation to control of epimerization of tea catechins[J]. Journal of the Science of Food and Agriculture, 2007, 87(9): 1748-1752. DOI: 10.1002/jsfa.2913
doi: 10.1002/jsfa.2913
22 沈莹.紫娟茶代谢组学分析及干预高脂诱导C57BL/6小鼠代谢综合征[D].安徽,合肥:安徽农业大学,2018.
SHEN Y. Metabolomics analysis of Zijuan tea and its prevention effect on metabolic syndrome in high-fat diet induced C57BL/6 mice[D]. Hefei, Anhui: Anhui Agricultural University, 2018. (in Chinese with English abstract)
23 SCHARBERT S, HOLZMANN N, HOFMANN T. Identi-fication of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse[J]. Journal of Agricultural and Food Chemistry, 2004, 52(11): 3498-3508. DOI: 10.1021/jf049802u
doi: 10.1021/jf049802u
24 SCHARBERT S, HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5377-5384. DOI: 10.1021/jf050294d
doi: 10.1021/jf050294d
25 刘阳.龙井茶加工过程中黄酮苷动态变化及其浸出特性[D].浙江,杭州:中国农业科学院,2015.
LIU Y. Dynamic variation of flavone and flavonol glycosides in Longjing tea during manufacturing and their extracting characteristics[D]. Hangzhou, Zhejiang: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
26 WANG K B, RUAN J Y. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas[J]. International Journal of Food Science & Technology, 2009, 44(12): 2476-2484. DOI: 10.1111/j.1365-2621.2009.02040.x
doi: 10.1111/j.1365-2621.2009.02040.x
27 YE J H, YE Y, YIN J F, et al. Bitterness and astringency of tea leaves and products: formation mechanism and reducing strategies[J]. Trends in Food Science & Technology, 2022, 123: 130-143. DOI: 10.1016/j.tifs.2022.02.031
doi: 10.1016/j.tifs.2022.02.031
28 YANG C, HU Z Y, LU M L, et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International, 2018, 106: 909-919. DOI: 10.1016/j.foodres.2018.01.069
doi: 10.1016/j.foodres.2018.01.069
29 YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844-858. DOI: 10.1080/10408398.2018.1552245
doi: 10.1080/10408398.2018.1552245
30 黄斯晨,赵宏朋,胡永丹,等.超高效液相色谱-高分辨质谱联用结合整合过滤策略全面分析茶树花中化学成分[J].色谱,2022,40(3):242-252. DOI:10.3724/SP.J.1123.2021.07015
HUANG S C, ZHAO H P, HU Y D, et al. Comprehensive analysis of chemical constituents of tea flowers by ultra-performance liquid chromatography-high resolution mass spectrometry combined with integrated filtering strategy[J]. Chinese Journal of Chromatography, 2022, 40(3): 242-252. (in Chinese with English abstract)
doi: 10.3724/SP.J.1123.2021.07015
31 张燕红.典型酚酸类化合物的呈味特性及对绿茶茶汤苦涩味的影响[D].安徽,合肥:安徽农业大学,2019.
ZHANG Y H. The taste characteristics of typical phenolic acids and their effects on the bitterness and astringency of green tea infusion[D]. Hefei, Anhui: Anhui Agricultural University, 2019. (in Chinese with English abstract)
32 施兆鹏,刘仲华.夏茶苦涩味化学实质的数学模型探讨[J].茶叶科学,1987,7(2):7-12.
SHI Z P, LIU Z H. Probe into mathematical model of chemical essence of bitterness and astringency in summer green tea[J]. Journal of Tea Science, 1987, 7(2): 7-12. (in Chinese with English abstract)
33 ZHANG Y N, YIN J F, CHEN J X, et al. Improving the sweet aftertaste of green tea infusion with tannase[J]. Food Chemistry, 2016, 192: 470-476. DOI: 10.1016/j.foodchem.2015.07.046
doi: 10.1016/j.foodchem.2015.07.046
34 曹冰冰.红紫芽茶树花青素形成的生化基础及其对成茶品质的影响[D].湖南,长沙:湖南农业大学,2018.
CAO B B. Biochemical basis of anthocyanin formation in purple tea and its effect on the quality of tea products[D]. Changsha, Hunan: Hunan Agricultural University, 2018. (in Chinese with English abstract)
35 ZHANG Q F, HU J H, LIU M Y, et al. Stimulated biosynthesis of delphinidin-related anthocyanins in tea shoots reducing the quality of green tea in summer[J]. Journal of the Science of Food and Agriculture, 2020, 100(4): 1505-1514. DOI: 10.1002/jsfa.10158
doi: 10.1002/jsfa.10158
36 SHI L Z, KIM E, YANG L Y, et al. Effect of a combined microwave-assisted drying and air drying on improving active nutraceutical compounds, flavor quality, and antioxidant properties of Camellia sinensis L. (cv. Longjing 43) flowers[J]. Food Quality and Safety, 2021, 5: fyaa040. DOI: 10.1093/fqsafe/fyaa040
doi: 10.1093/fqsafe/fyaa040
37 舒娜.六堡茶关键风味物质研究[D].重庆:西南大学,2021.
SHU N. Research on key flavor components of Liupao tea[D]. Chongqing: Southwest University, 2021. (in Chinese with English abstract)
[1] 李双琴,汪仲毅,赵琬玥,陈龙清,胡慧贞. 基于代谢组学和转录组学挖掘荷叶生物碱合成途径关键基因[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 328-340.
[2] 陈莲芙,任苧,陈益,屠幼英. 茶树花皂苷对卵巢癌干细胞样细胞增殖的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 667-676.
[3] 李金,陈莲芙,金恩惠,李博,屠幼英. 不同茶树品种的茶树花黄酮苷研究[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 707-714.
[4] 侯玲,沈娴,陈琳,金恩惠,吴媛媛,屠幼英. 茶树花蛋白质碱提和酶提工艺优化及其功能性质[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 442-450.