Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (6): 709-720    DOI: 10.3785/j.issn.1008-9209.2022.06.301
综述     
CRISPR/Cas基因编辑技术与植物病毒研究进展
徐子妍1,2(),李浩2,周焕斌2,周雪平1,2()
1.浙江大学农业与生物技术学院生物技术研究所,杭州 310058
2.中国农业科学院植物保护研究所,北京 100193
Research progress on CRISPR/Cas gene editing technology cooperating with plant virus
Ziyan XU1,2(),Hao LI2,Huanbin ZHOU2,Xueping ZHOU1,2()
1.Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
 全文: PDF(1532 KB)   HTML
摘要:

规律成簇的间隔短回文重复序列及其相关蛋白[clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), CRISPR/Cas]系统介导的基因编辑技术因简单、高效、通用、精确等特点,目前已经成为现代植物分子生物学以及农业育种工作中的重要研究工具。植物病毒病严重危害植物的正常生长发育,给全球农作物生产造成巨大的损失。CRISPR/Cas基因编辑技术可以有效地靶向DNA病毒和RNA病毒序列,提高寄主植物对病毒的抵抗力。此外,利用基因编辑技术靶向病毒侵染或复制所需的植物内源基因可创制新的抗病毒种质资源。本文综述了CRISPR/Cas基因编辑技术和利用其开展抗病毒研究的进展和实例,同时讨论了病毒诱导的基因编辑系统的应用前景,并对CRISPR/Cas基因编辑技术在植物病毒研究中的优势与挑战进行了展望,为利用基因编辑技术进行抗病毒种质创新提供了指导。

关键词: CRISPR/Cas基因编辑技术DNA病毒RNA病毒病毒诱导的基因编辑系统抗病毒工程    
Abstract:

In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system-mediated gene editing technology has become an important research tool in modern plant molecular biology and agricultural breeding due to its simplicity, high efficiency, generality and accuracy. Plant virus disease seriously endangers the normal growth and development of plants, and causes devastating damages to crop production worldwide. CRISPR/Cas gene editing technology can effectively target DNA virus and RNA virus sequences, and improve the resistance of host plants to viruses. In addition, gene editing technology can edit plant endogenous genes which are conducive to viral infection or replication to create new antiviral germplasm resources. This study reviewed the CRISPR/Cas gene editing technology and elaborated the research progress and examples of using this system to achieve antiviral infection. The potential application prospects and limitations of virus-induced gene editing system were also discussed. Finally, the advantages and challenges of CRISPR/Cas gene editing technology in plant antiviral research were pointed out, which will be useful for guiding innovation of germplasms for virus resistance.

Key words: CRISPR/Cas gene editing technology    DNA virus    RNA virus    virus-induced gene editing system    antiviral engineering
收稿日期: 2022-06-30 出版日期: 2022-12-27
CLC:  S 435  
基金资助: 国家自然科学基金重点国际(地区)合作研究项目(31720103914)
通讯作者: 周雪平     E-mail: ziyanxu0919@163.com;zzhou@zju.edu.cn
作者简介: 徐子妍(https://orcid.org/0000-0003-3790-2297),E-mail:ziyanxu0919@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐子妍
李浩
周焕斌
周雪平

引用本文:

徐子妍,李浩,周焕斌,周雪平. CRISPR/Cas基因编辑技术与植物病毒研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 709-720.

Ziyan XU,Hao LI,Huanbin ZHOU,Xueping ZHOU. Research progress on CRISPR/Cas gene editing technology cooperating with plant virus. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 709-720.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.06.301        https://www.zjujournals.com/agr/CN/Y2022/V48/I6/709

图1  CRISPR/Cas基因编辑技术应用下的抗病毒策略

植物

Plant

病毒

Virus

靶标位点

Target site

Cas蛋白

Cas protein

文献

Reference

靶向DNA病毒 Target DNA virus
本氏烟 Nicotiana benthamianaBSCTVCPRep、IRSpCas9[16]
拟南芥 Arabidopsis thaliana
本氏烟 Nicotiana benthamianaBeYDVRep/Rep、LIRSpCas9[17]

TYLCV、BCTV、

MeMV

CPRep、IRSpCas9[18]
本氏烟 Nicotiana benthamianaTYLCVCPRepSpCas9[22]
番茄 Solanum lycopersicum
拟南芥 Arabidopsis thalianaCaMVCPSpCas9[41]
本氏烟 Nicotiana benthamianaCLCuMuVC1、IRSpCas9[19]
CLCuVIRSpdCas9[20]
大麦 Hordeum vulgareWDVMP/CPRep/RepA、LIRSpCas9[21]
木薯 Manihot esculentaACMVAC2AC3SpCas9[24]
香蕉 Gonja manjayaBSVORF1、ORF2、ORF3SpCas9[23]
靶向RNA病毒 Target RNA virus
本氏烟 Nicotiana benthamianaTMV、CMV

ORF1、ORF2、ORF3、CP

3′ UTR

FnCas9[25]
拟南芥 Arabidopsis thaliana
本氏烟 Nicotiana benthamianaTuMVHC-Pro、CPLshCas13a[26-27]
TMVORFLshCas13a[28]
水稻 Oryza sativaSRBSDV、RSMVORFLshCas13a[28]
马铃薯 Solanum tuberosumPVYP3、CI、Nib、CPLshCas13a[29]
本氏烟 Nicotiana benthamianaTuMV-GFPGFP

LshCas13a/Lwa-Cas13a/

Psp-Cas13b/Rf-Cas13d

[42-43]
CMV-GFP/TMV-GFPGFPRf-Cas13d[43]
靶向宿主基因 Target host gene
黄瓜 Cucumis sativusCVYV、ZYMV、PRSVeIF4ESpCas9[31]
拟南芥 Arabidopsis thalianaTuMVeIF4ESpCas9[32]
水稻 Oryza sativaRTSVeIF(iso)4GSpCas9[33]
木薯 Manihot esculentaCBSVnCBP-1、nCBP-2SpCas9[34]
拟南芥 Arabidopsis thalianaClYVVeIF4ECBE[36]
马铃薯 Solanum tuberosumPVYCoilinSpCas9[37]
大豆 Glycine maxSMVGmF3H1、GmF3H2、GmFNSII-1SpCas9[39]
番茄 Solanum lycopersicumToBRFVSlTOM1SpCas9[40]
表1  CRISPR/Cas基因编辑技术在植物抗病毒中的应用

植物

Plant

病毒载体

Virus vector

递送元件

Delivery element

文献

Reference

本氏烟 Nicotiana benthamianaBeYDVCRISPR/Cas[44-46]
马铃薯 Solanum tuberosum
番茄 Solanum lycopersicum
蒺藜苜蓿 Medicago truncatula
本氏烟 Nicotiana benthamianaCaLCuVsgRNA[44]
小麦 Triticum aestivumWDVCRISPR/Cas[47-48]
水稻 Oryza sativa
大麦 Hordeum vulgare
本氏烟 Nicotiana benthamianaTRVsgRNA、sgRNA-FT、sgRNA-tRNA[2652-5467-68]
拟南芥 Arabidopsis thalianaCLCrVsgRNA[69]
本氏烟 Nicotiana benthamianaPEBVsgRNA[55]
拟南芥 Arabidopsis thaliana
本氏烟 Nicotiana benthamianaTMVsgRNA[56-58]
小麦 Triticum aestivumBSMVsgRNA[64]
玉米 Zea mays
本氏烟 Nicotiana benthamianaBNYVVsgRNA[65]
狗尾草 Setaria viridisFoMVsgRNA[62-63]
玉米 Zea mays
本氏烟 Nicotiana benthamianaSYNVCRISPR/Cas9、sgRNA[6]
PVXCRISPR/Cas9、sgRNA[60]
TEVCRISPR/Cas12[5]
大豆 Glycine maxALSVsgRNA[66]
表2  病毒诱导的基因编辑在植物中的应用
1 NICAISE V. Crop immunity against viruses: outcomes and future challenges[J]. Frontiers in Plant Science, 2014, 5: 660. DOI:10.3389/fpls.2014.00660
doi: 10.3389/fpls.2014.00660
2 MANGHWAR H, LINDSEY K, ZHANG X L, et al. CRISPR/Cas system: recent advances and future prospects for genome editing[J]. Trends in Plant Science, 2019, 24(12): 1102-1125. DOI:10.1016/j.tplants.2019.09.006
doi: 10.1016/j.tplants.2019.09.006
3 KHAN Z A, KUMAR R, DASGUPTA I. CRISPR/Cas-mediated resistance against viruses in plants[J]. International Journal of Molecular Sciences, 2022, 23(4):2303. DOI:10.3390/ijms23042303
doi: 10.3390/ijms23042303
4 ZHOU X P, HUANG C J. Virus-induced gene silencing using begomovirus satellite molecules[J]. Methods in Molecular Biology, 2012, 894: 57-67. DOI:10.1007/978-1-61779-882-5_4
doi: 10.1007/978-1-61779-882-5_4
5 URANGA M, VAZQUEZ-VILAR M, ORZÁEZ D, et al. CRISPR-Cas12a genome editing at the whole-plant level using two compatible RNA virus vectors[J]. CRISPR Journal, 2021, 4(5): 761-769. DOI:10.1089/crispr.2021.0049
doi: 10.1089/crispr.2021.0049
6 MA X N, ZHANG X Y, LIU H M, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants, 2020, 6(7): 773-779. DOI:10.1038/s41477-020-0704-5
doi: 10.1038/s41477-020-0704-5
7 CHEN K L, WANG Y P, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1):667-697. DOI:10.1146/annurev-arplant-050718-100049
doi: 10.1146/annurev-arplant-050718-100049
8 HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259. DOI:10.1016/j.cell.2017.11.032
doi: 10.1016/j.cell.2017.11.032
9 COLLIAS D, BEISEL C L. CRISPR technologies and the search for the PAM-free nuclease[J]. Nature Communica-tions, 2021, 12: 555. DOI:10.1038/s41467-020-20633-y
doi: 10.1038/s41467-020-20633-y
10 LEUNG R K K, CHENG Q X, WU Z L, et al. CRISPR-Cas12-based nucleic acids detection systems[J]. Methods, 2021, 203: 276-281. DOI:10.1016/j.ymeth.2021.02.018
doi: 10.1016/j.ymeth.2021.02.018
11 ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. DOI:10.1126/science.aaf5573
doi: 10.1126/science.aaf5573
12 LIU L, LI X Y, MA J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726. DOI:10.1016/j.cell.2017.06.050
doi: 10.1016/j.cell.2017.06.050
13 宗媛,高彩霞.碱基编辑系统研究进展[J].遗传,2019,41(9):777-800. DOI:10.16288/j.yczz.19-205
ZONG Y, GAO C X. Progress on base editing systems[J]. Hereditas (Beijing), 2019, 41(9): 777-800. (in Chinese with English abstract)
doi: 10.16288/j.yczz.19-205
14 洪健,李德葆,周雪平.植物病毒分类图谱[M].北京:科学出版社,2001.
HONG J, LI D B, ZHOU X P. Classification Map of Plant Viruses[M]. Beijing: Science Press, 2001. (in Chinese)
15 LI F F, QIAO R, WANG Z Q, et al. Occurrence and distribution of geminiviruses in China[J]. Science China-Life Sciences, 2022, 65(8): 1498-1503. DOI:10.1007/s11427-022-2125-2
doi: 10.1007/s11427-022-2125-2
16 JI X, ZHANG H W, ZHANG Y, et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants[J]. Nature Plants, 2015, 1(10): 15144. DOI:10.1038/nplants.2015.144
doi: 10.1038/nplants.2015.144
17 BALTES N J, HUMMEL A W, KONECNA E, et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system[J]. Nature Plants, 2015, 1(10): 15145. DOI:10.1038/nplants.2015.145
doi: 10.1038/nplants.2015.145
18 ALI Z, ABULFARAJ A, IDRIS A, et al. CRISPR/Cas9-mediated viral interference in plants[J]. Genome Biology, 2015, 16: 238. DOI:10.1186/s13059-015-0799-6
doi: 10.1186/s13059-015-0799-6
19 YIN K Q, HAN T, XIE K, et al. Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana [J]. Phytopathology Research, 2019, 1: 9. DOI:10.1186/s42483-019-0017-7
doi: 10.1186/s42483-019-0017-7
20 KHAN Z, KHAN S H, AHMAD A, et al. CRISPR/dCas9-mediated inhibition of replication of begomoviruses[J]. International Journal of Agriculture and Biology, 2019, 21(4): 711-718. DOI:10.17957/IJAB/15.0948
doi: 10.17957/IJAB/15.0948
21 KIS A, HAMAR É, THOLT G, et al. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2019, 17(6): 1004-1006. DOI:10.1111/pbi.13077
doi: 10.1111/pbi.13077
22 TASHKANDI M, ALI Z, ALJEDAANI F, et al. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato[J]. Plant Signal & Behavior, 2018, 13(10): e1525996. DOI:10.1080/15592324.2018.1525996
doi: 10.1080/15592324.2018.1525996
23 TRIPATHI J N, NTUI V O, RON M, et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding[J]. Communications Biology, 2019, 2: 46. DOI:10.1038/s42003-019-0288-7
doi: 10.1038/s42003-019-0288-7
24 MEHTA D, STÜRCHLER A, ANJANAPPA R B, et al. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses[J]. Genome Biology, 2019, 20: 80. DOI:10.1186/s13059-019-1678-3
doi: 10.1186/s13059-019-1678-3
25 ZHANG T, ZHENG Q F, YI X, et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system[J]. Plant Biotechnology Journal, 2018, 16(8): 1415-1423. DOI:10.1111/pbi.12881
doi: 10.1111/pbi.12881
26 AMAN R, ALI Z, BUTT H, et al. RNA virus interference via CRISPR/Cas13a system in plants[J]. Genome Biology, 2018, 19: 1. DOI:10.1186/s13059-017-1381-1
doi: 10.1186/s13059-017-1381-1
27 AMAN R, MAHAS A, BUTT H, et al. Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis [J]. Viruses, 2018, 10(12): 732. DOI:10.3390/v10120732
doi: 10.3390/v10120732
28 ZHANG T, ZHAO Y L, YE J J, et al. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants[J]. Plant Biotechnology Journal, 2019, 17(7): 1185-1187. DOI:10.1111/pbi.13095
doi: 10.1111/pbi.13095
29 ZHAN X H, ZHANG F J, ZHONG Z Y, et al. Generation of virus-resistant potato plants by RNA genome targeting[J]. Plant Biotechnology Journal, 2019, 17(9): 1814-1822. DOI:10.1111/pbi.13102
doi: 10.1111/pbi.13102
30 LELLIS A D, KASSCHAU K D, WHITHAM S A, et al. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection[J]. Current Biology, 2002, 12(12): 1046-1051. DOI:10.1016/s0960-9822(02)00898-9
doi: 10.1016/s0960-9822(02)00898-9
31 CHANDRASEKARAN J, BRUMIN M, WOLF D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Molecular Plant Pathology, 2016, 17(7): 1140-1153. DOI:10.1111/mpp.12375
doi: 10.1111/mpp.12375
32 PYOTT D E, SHEEHAN E, MOLNAR A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants[J]. Molecular Plant Pathology, 2016, 17(8): 1276-1288. DOI:10.1111/mpp.12417
doi: 10.1111/mpp.12417
33 MACOVEI A, SEVILLA N R, CANTOS C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus [J]. Plant Biotechnology Journal, 2018, 16(11): 1918-1927. DOI:10.1111/pbi.12927
doi: 10.1111/pbi.12927
34 GOMEZ M A, LIN Z D, MOLL T, et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant Biotechnology Journal, 2019, 17(2): 421-434. DOI:10.1111/pbi.12987
doi: 10.1111/pbi.12987
35 BASTET A, ROBAGLIA C, GALLOIS J L. eIF4e resistance: natural variation should guide gene editing[J]. Trends in Plant Science, 2017, 22(5): 411-419. DOI:10.1016/j.tplants.2017.01.008
doi: 10.1016/j.tplants.2017.01.008
36 BASTET A, ZAFIROV D, GIOVINAZZO N, et al. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance topotyviruses[J]. Plant Biotechnology Journal, 2019, 17(9): 1736-1750. DOI:10.1111/pbi.13096
doi: 10.1111/pbi.13096
37 MAKHOTENKO A V, KHROMOV A V, SNIGIR E A, et al. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing[J]. Doklady Biochemistry and Biophysics, 2019, 484(1): 88-91. DOI:10.1134/S1607672919010241
doi: 10.1134/S1607672919010241
38 CHENG H, YANG H, ZHANG D, et al. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance[J]. Molecular Breeding, 2010, 25(1): 13-24. DOI:10.1007/s11032-009-9305-8
doi: 10.1007/s11032-009-9305-8
39 ZHANG P P, DU H Y, WANG J, et al. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus[J]. Plant Biotechnology Journal, 2020, 18(6): 1384-1395. DOI:10.1111/pbi.13302
doi: 10.1111/pbi.13302
40 ISHIKAWA M, YOSHIDA T, MATSUYAMA M, et al. Tomato brown rugose fruit virus resistance generated by quadruple knockout of homologs of TOBAMOVIRUS MULTIPLICA-TION1 in tomato[J]. Plant Physiology, 2022, 189(2): 679-686. DOI:10.1093/plphys/kiac103
doi: 10.1093/plphys/kiac103
41 LIU H J, SOYARS C L, LI J H, et al. CRISPR/Cas9-mediated resistance to cauliflower mosaic virus[J]. Plant Direct, 2018, 2(3): e00047. DOI:10.1002/pld3.47
doi: 10.1002/pld3.47
42 MAHAS A, AMAN R, MAHFOUZ M. CRISPR-Cas13d mediates robust RNA virus interference in plants[J]. Genome Biology, 2019, 20: 263. DOI:10.1186/s13059-019-1881-2
doi: 10.1186/s13059-019-1881-2
43 CAO Y S, ZHOU H B, ZHOU X P, et al. Conferring resistance to plant RNA viruses with the CRISPR/CasRx system[J]. Virologica Sinica, 2021, 36(4): 814-817. DOI:10.1007/s12250-020-00338-8
doi: 10.1007/s12250-020-00338-8
44 BALTES N J, GIL-HUMANES J, CERMAK T, et al. DNA replicons for plant genome engineering[J]. The Plant Cell, 2014, 26(1): 151-163. DOI:10.1105/tpc.113.119792
doi: 10.1105/tpc.113.119792
45 ČERMÁK T, BALTES N J, ČEGAN R, et al. High-frequency, precise modification of the tomato genome[J]. Genome Biology, 2015, 16: 232. DOI:10.1186/s13059-015-0796-9
doi: 10.1186/s13059-015-0796-9
46 VU T V, SIVANKALYANI V, KIM E J, et al. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato[J]. Plant Biotechnology Journal, 2020, 18(10): 2133-2143. DOI:10.1111/pbi.13373
doi: 10.1111/pbi.13373
47 GIL-HUMANES J, WANG Y P, LIANG Z, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9[J]. The Plant Journal, 2017, 89(6): 1251-1262. DOI:10.1111/tpj.13446
doi: 10.1111/tpj.13446
48 WANG M, LU Y, BOTELLA J R, et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(7): 1007-1010. DOI:10.1016/j.molp.2017.03.002
doi: 10.1016/j.molp.2017.03.002
49 BUTLER N M, ATKINS P A, VOYTAS D F, et al. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system[J]. PLoS ONE, 2015, 10(12): e0144591. DOI:10.1371/journal.pone.0144591
doi: 10.1371/journal.pone.0144591
50 BUTLER N M, BALTES N J, VOYTAS D F, et al. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases[J]. Frontiers in Plant Science, 2016, 7: 1045. DOI:10.3389/fpls.2016.01045
doi: 10.3389/fpls.2016.01045
51 YIN K Q, HAN T, LIU G, et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing[J]. Scientific Reports, 2015, 5: 14926. DOI:10.1038/srep14926
doi: 10.1038/srep14926
52 MARTON I, ZUKER A, SHKLARMAN E, et al. Nontrans-genic genome modification in plant cells[J]. Plant Physiology, 2010, 154(3): 1079-1087. DOI:10.1104/pp.110.164806
doi: 10.1104/pp.110.164806
53 ALI Z, ABUL-FARAJ A, PIATEK M, et al. Activity and specificity of TRV-mediated gene editing in plants[J]. Plant Signaling & Behavior, 2015, 10(10): e1044191. DOI:10.1080/15592324.2015.1044191
doi: 10.1080/15592324.2015.1044191
54 ALI Z, ALI S, TASHKANDI M, et al. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion[J]. Scientific Reports, 2016, 6: 26912. DOI:10.1038/srep26912
doi: 10.1038/srep26912
55 ALI Z, EID A, ALI S, et al. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis [J]. Virus Research, 2018, 244: 333-337. DOI:10.1016/j.virusres.2017.10.009
doi: 10.1016/j.virusres.2017.10.009
56 CODY W B, SCHOLTHOF H B, MIRKOV T E. Multiplexed gene editing and protein overexpression using a Tobacco mosaic virus viral vector[J]. Plant Physiology, 2017, 175(1): 23-35. DOI:10.1104/pp.17.00411
doi: 10.1104/pp.17.00411
57 CODY W B, SCHOLTHOF H B. Native processing of single guide RNA transcripts to create catalytic Cas9/single guide RNA complexes in planta[J]. Plant Physiology, 2020, 184(2): 1194-1206. DOI:10.1104/pp.20.00150
doi: 10.1104/pp.20.00150
58 CHIONG K T, CODY W B, SCHOLTHOF H B. RNA silencing suppressor-influenced performance of a virus vector delivering both guide RNA and Cas9 for CRISPR gene editing[J]. Scientific Reports, 2021, 11: 6769. DOI:10.1038/s41598-021-85366-4
doi: 10.1038/s41598-021-85366-4
59 KENDALL A, MCDONALD M, BIAN W, et al. Structure of flexible filamentous plant viruses[J]. Journal of Virology, 2008, 82(19): 9546-9554. DOI:10.1128/JVI.00895-08
doi: 10.1128/JVI.00895-08
60 ARIGA H, TOKI S, ISHIBASHI K. Potato virus X vector-mediated DNA-free genome editing in plants[J]. Plant and Cell Physiology, 2020, 61(11): 1946-1953. DOI:10.1093/pcp/pcaa123
doi: 10.1093/pcp/pcaa123
61 BOUTON C, KING R C, CHEN H, et al. Foxtail mosaic virus: a viral vector for protein expression in cereals[J]. Plant Physiology, 2018, 177(4): 1352-1367. DOI:10.1104/pp.17.01679
doi: 10.1104/pp.17.01679
62 MEI Y, BEERNINK B M, ELLISON E E, et al. Protein expression and gene editing in monocots using foxtail mosaic virus vectors[J]. Plant Direct, 2019, 3(11): e00181. DOI:10.1002/pld3.181
doi: 10.1002/pld3.181
63 BEERNINK B M, HOLAN K L, LAPPE R R, et al. Direct agroinoculation of maize seedlings by injection with recom-binant foxtail mosaic virus and sugarcane mosaic virus infectious clones[J]. Journal of Visualized Experiments, 2021, 168: e62277. DOI:10.3791/62277
doi: 10.3791/62277
64 HU J C, LI S Y, LI Z L, et al. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize[J]. Molecular Plant Pathology, 2019, 20(10): 1463-1474. DOI:10.1111/mpp.12849
doi: 10.1111/mpp.12849
65 JIANG N, ZHANG C, LIU J Y, et al. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing[J]. Plant Biotechnology Journal, 2019, 17(7): 1302-1315. DOI:10.1111/pbi.13055
doi: 10.1111/pbi.13055
66 LUO Y J, NA R, NOWAK J S, et al. Development of a csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing[J]. BMC Plant Biology, 2021, 21: 419. DOI:10.1186/s12870-021-03138-8
doi: 10.1186/s12870-021-03138-8
67 OH Y, KIM S G. RPS5A promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata [J]. Molecules and Cells, 2021, 44(12): 911-919. DOI:10.14348/molcells.2021.0237
doi: 10.14348/molcells.2021.0237
68 ELLISON E E, NAGALAKSHMI U, GAMO M E, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nature Plants, 2020, 6(6): 620-624. DOI:10.1038/s41477-020-0670-y
doi: 10.1038/s41477-020-0670-y
69 LEI J F, DAI P H, LI Y, et al. Heritable gene editing using FT mobile guide RNAs and DNA viruses[J]. Plant Methods, 2021, 17: 20. DOI:10.1186/s13007-021-00719-4
doi: 10.1186/s13007-021-00719-4
[1] 蒯鹏,娄永根. 稻飞虱生物学、生态学及其防控技术研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 692-700.
[2] 白月亮,周文武,祝增荣. 气候变暖对天敌昆虫的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 269-278.
[3] 郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.
[4] 张贵,张园园,田永伟,赵晓军,张光,周洪友,景岚,赵君. 向日葵黄萎病种子带菌研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 41-48.
[5] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[6] 孙晓婷, 鹿秀云, 张敬泽, 祝水金. 浙江棉花黄萎病菌致病型菌株的鉴定及高温抑制病害的表征分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 671-678.
[7] 宋革,郭玉双,饶黎霞,周雪平,吴建祥. 马铃薯Y病毒单克隆抗体的制备及其检测应用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 517-.
[8] 余航,刘苏,朱晴子,周文武,梁庆梅,史肖肖,祝梓杰,祝增荣. 白背飞虱细胞色素P450还原酶基因的分子特征与表达模式分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 391-400.
[9] 曹宇,闫玉芳,杨文佳,熊正利,王丽娟,李灿. 二氧化碳气调对锯谷盗的毒力及其能源物质利用的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 631-640.
[10] 王道泽,洪文英,吴燕君,胡选祥,汪彦欣. 防治白背飞虱对南方水稻黑条矮缩病发生的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 650-658.
[11] 郭燕, 巨青松, 姚洪渭*, 蒋明星, 叶恭银, 程家安. 环境因子变化对褐飞虱非特异性酯酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 591-599.
[12] 孔丹丹, 阙亚伟, 闫霞, 李亚, 陈卫良, 王政逸*. 水稻纹枯病菌(Rhizoctonia solani)原生质体制备与再生技术及优化[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 274-280.