Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (2): 191-199    DOI: 10.3785/j.issn.1008-9209.2022.03.021
昆虫生理生化与害虫生物防治专题     
松材线虫黄素单加氧酶家族基因结构与表达模式分析
郝昕1(),谭瑞娜2,陈洁1,李洋3,曹景鑫1,刁健1,邓振2,张平4,马玲1,2()
1.东北林业大学林学院,黑龙江 哈尔滨 150040
2.东北林业大学黑龙江省林木保护技术创新中心,黑龙江 哈尔滨 150040
3.中国科学院动物研究所,农业虫害鼠害综合治理研究国家重点实验室,北京 100101
4.东北林业大学森林持续经营与环境微生物工程黑龙江省重点实验室,黑龙江 哈尔滨 150040
Analysis of structures and expression patterns of the flavin-containing monooxygenase family genes in Bursaphelenchus xylophilus
Xin HAO1(),Ruina TAN2,Jie CHEN1,Yang LI3,Jingxin CAO1,Jian DIAO1,Zhen DENG2,Ping ZHANG4,Ling MA1,2()
1.School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China
2.Innovation Center for Forest Protection Technology of Heilongjiang Province, Northeast Forestry University, Harbin 150040, Heilongjiang, China
3.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
4.Heilongjiang Provincial Key Laboratory of Forest Sustainable Management and Environmental Microbiology Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
 全文: PDF(4894 KB)   HTML
摘要:

黄素单加氧酶(flavin-containing monooxygenases, FMOs)是一类广泛存在于植物、动物、微生物中,主要参与调控生物体对内源性及外源性物质代谢的生物酶家族。为探究松材线虫FMOs(Bursaphelenchus xylophilus FMOs, BxFMOs)在宿主中定殖和响应杀线剂胁迫过程中所发挥的功能,本研究首先通过生物信息学手段从松材线虫基因组中筛选并鉴定了13个BxFMOs家族基因,随后对获得的BxFMOs家族基因进行理化特性、进化发育、蛋白结构及基因表达模式分析。结果表明:BxFMOs家族成员分布于5条染色体上,氨基酸数目为432~572个,分子量为49.77~66.09 kDa,等电点为6.26~9.27,其结构较为保守。基因表达模式分析揭示,BxFMOs家族对松材线虫定殖和响应杀线剂胁迫具有显著影响。本研究对探索松材线虫在宿主中的定殖机制和寻求防治松材线虫分子靶标具有重要的指导意义和理论价值。

关键词: 松材线虫黄素单加氧酶家族基因蛋白结构生物信息学    
Abstract:

Flavin-containing monooxygenases (FMOs) participate in endogenous and exogenous metabolisms in organisms, and exist widely in plants, animals and microorganisms. To explore the function of Bursaphelenchus xylophilus FMOs (BxFMOs) in the host colonization and in response to the nematicide stress, we firstly screened and identified 13 Bxfmos from the genome of B. xylophilus by means of bioinformatics, and then analyzed the physicochemical properties, evolutionary development, protein structures, and gene expression patterns of these genes. The results showed that, the Bxfmos distributed on the five chromosomes; their numbers of amino acids were from 432 to 572; their molecular weights were between 49.77 kDa and 66.09 kDa; and their isoelectric points were between 6.26 and 9.27. The structures of BxFMOs were relatively conservative. The gene expression patterns revealed that the BxFMOs had significant effects on the colonization of B. xylophilus and its respondence to nematicidal agents. The above results have important guiding significance and theoretical value for exploring the colonization mechanism of B. xylophilus in the host and seeking the molecular targets to control B. xylophilus.

Key words: Bursaphelenchus xylophilus    flavin-containing monooxygenase family genes    protein structure    bioinformatics
收稿日期: 2022-03-02 出版日期: 2023-04-27
CLC:  S763.49  
基金资助: 中央高校基本科研业务费专项资金项目(2572021AW25);国家重点研发计划项目(2021YFD1400904)
通讯作者: 马玲     E-mail: xinhao@nefu.edu.cn;maling63@163.com
作者简介: 郝昕(https://orcid.org/0000-0002-6255-9243),E-mail:xinhao@nefu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝昕
谭瑞娜
陈洁
李洋
曹景鑫
刁健
邓振
张平
马玲

引用本文:

郝昕,谭瑞娜,陈洁,李洋,曹景鑫,刁健,邓振,张平,马玲. 松材线虫黄素单加氧酶家族基因结构与表达模式分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 191-199.

Xin HAO,Ruina TAN,Jie CHEN,Yang LI,Jingxin CAO,Jian DIAO,Zhen DENG,Ping ZHANG,Ling MA. Analysis of structures and expression patterns of the flavin-containing monooxygenase family genes in Bursaphelenchus xylophilus. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 191-199.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.03.021        https://www.zjujournals.com/agr/CN/Y2023/V49/I2/191

蛋白编号

Protein ID

本文编号

ID in this article

氨基酸数目

Number of

amino acids

分子量

Molecular

weight/kDa

等电点

Isoelectric

point

脂肪族氨基酸指数

Aliphatic

index

总平均亲水性

Grand

average of

hydrophilicity

分子式

Formula

不稳定

系数

Instability

index

BXYJ_LOCUS4BxFMO154362.058.7679.83-0.356C2812H4318N754O791S2242.77
BXYJ_LOCUS93BxFMO248155.159.0072.39-0.407C2454H3808N686O704S3042.71
BXYJ_LOCUS94BxFMO355263.488.9576.30-0.327C2853H4411N771O803S3541.59
BXYJ_LOCUS281BxFMO455763.618.1777.50-0.345C2875H4431N763O816S2735.52
BXYJ_LOCUS282BxFMO555763.528.1876.12-0.393C2867H4410N770O818S2436.16
BXYJ_LOCUS617BxFMO654461.538.7086.73-0.200C2788H4345N731O791S2436.96
BXYJ_LOCUS714BxFMO743249.776.2680.00-0.404C2249H3420N604O646S1639.19
BXYJ_LOCUS5342BxFMO851459.438.9879.47-0.357C2735H4145N723O747S1027.16
BXYJ_LOCUS9545BxFMO953261.468.0587.91-0.294C2801H4311N745O777S1931.05
BXYJ_LOCUS10598BxFMO1054060.249.0681.06-0.147C2741H4209N723O769S2031.64
BXYJ_LOCUS11576BxFMO1157266.099.0985.87-0.103C3036H4627N789O811S2937.52
BXYJ_LOCUS13418BxFMO1254161.587.9476.01-0.309C2793H4236N752O777S2538.69
BXYJ_LOCUS14657BxFMO1352460.249.2785.52-0.276C2736H4253N735O760S2039.45
表1  BxFMOs家族成员蛋白理化性质分析
图1  松材线虫与其他线虫FMOs家族系统发育进化树Ce:秀丽线虫;Cre:远交线虫。
图2  BxFMOs家族基因结构
图3  BxFMOs家族保守基序结构
图4  BxFMOs家族染色体定位

蛋白编号

Protein ID

氨基酸数目

Number of amino acids

蛋白结构(数量/占比)

Protein structure (number/percentage)

定位

Location

苏氨酸

Threonine

丝氨酸

Serine

酪氨酸

Tyrosine

α-螺旋

α-helix

β-折叠

β-fold

β-转角

β-turn

无规卷曲

Random coil

BxFMO1201713189/34.81%102/18.78%30/5.52%222/40.88%细胞外、细胞质、细胞核、细胞膜
BxFMO2112610139/28.90%100/20.79%24/4.99%218/45.32%细胞质
BxFMO3182211188/34.06%106/19.20%28/5.07%230/41.67%细胞质
BxFMO420139190/34.11%104/18.67%23/4.13%240/43.09%细胞质
BxFMO5201311185/33.21%105/18.85%29/5.21%238/42.73%细胞质
BxFMO611327189/34.74%94/17.28%21/3.86%240/44.12%细胞外、细胞质、细胞核
BxFMO79173135/31.25%77/17.82%28/6.48%192/44.44%细胞外
BxFMO86246160/31.13%110/21.40%29/5.64%215/41.83%细胞外
BxFMO9171813181/34.02%101/18.98%30/5.64%220/41.35%细胞质
BxFMO1013259176/32.59%99/18.33%31/5.74%234/43.33%细胞质
BxFMO11142110201/35.14%114/19.93%23/4.02%234/40.91%细胞质、细胞膜
BxFMO12131814185/34.20%100/18.48%30/5.55%226/41.77%细胞质
BxFMO1318207159/30.34%110/20.99%24/4.58%231/44.08%细胞质
表2  BxFMOs家族蛋白结构分析
图5  BxFMOs家族三级结构预测
图6  松材线虫接种到黑松幼苗后或在鱼藤酮胁迫下BxFMOs的表达谱
1 李硕,孙红,周艳涛,等.2021年全国主要林业有害生物发生情况及2022年发生趋势预测[J].中国森林病虫,2022,41(2):44-47. DOI:10.19688/j.cnki.issn1671-0886.20220009
LI S, SUN H, ZHOU Y T, et al. National occurrence of major forestry pests in 2021 and forecast of occurrence trends in 2022[J]. Forest Pest and Disease, 2022, 41(2): 44-47. (in Chinese)
doi: 10.19688/j.cnki.issn1671-0886.20220009
2 桑海泉,任伟强,陈鹏.黄素单加氧酶3及其代谢产物水平的变化对高原地区胆囊胆固醇结石形成影响的实验研究[J].中国普通外科杂志,2021,30(2):158-164. DOI:10.7659/j.issn.1005-6947.2021.02.005
SANG H Q, REN W Q, CHEN P. Experimental study of changes in flavin monooxygenase 3 and its metabolite levels in formation of gallbladder cholesterol stone in plateau areas[J]. Chinese Journal of General Surgery, 2021, 30(2):158-164. (in Chinese with English abstract)
doi: 10.7659/j.issn.1005-6947.2021.02.005
3 汤雨洁,田祥瑞,胡波,等.甜菜夜蛾黄素单加氧酶的原核表达及其对杀虫剂的代谢作用[J].南京农业大学学报,2019,42(4):672-681. DOI:10.7685/jnau.201811016
TANG Y J, TIAN X R, HU B, et al. Prokaryotic expressions of Spodoptera exigua flavin-dependent monooxygenases and the role in insecticide metabolism[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 672-681. (in Chinese with English abstract)
doi: 10.7685/jnau.201811016
4 BENEDETTI M S. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics[J]. Annales Pharmaceutiques Françaises, 2011, 69(1): 45-52. DOI: 10.1016/j.pharma.2010.10.004
doi: 10.1016/j.pharma.2010.10.004
5 TIAN X, ZHAO S, GUO Z, et al. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua [J]. Insect Molecular Biology, 2018, 27(5): 533-544. DOI: 10.1111/imb.12392
doi: 10.1111/imb.12392
6 魏琪.昆虫黄素单加氧酶在杀虫剂解毒与糖脂代谢中的作用[D].江苏,南京:南京农业大学,2019.
WEI Q. The roles of insect flavin-containing monooxygenases in insecticide detoxification and carbohydrate and lipid metabolism[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
7 刘思琪,汪琨璧,付亚雄,等.水稻黄素单加氧酶新基因OsFMO1表达特性及其功能初探[J].分子植物育种,2019,17(4):1039-1046. DOI:10.13271/j.mpb.017.001039
LIU S Q, WANG K B, FU Y X, et al. The expression characteristics and function of the new gene OsFMO1 in rice (Oryza sativa L.) flavine monooxygenase[J]. Molecular Plant Breeding, 2019, 17(4): 1039-1046. (in Chinese with English abstract)
doi: 10.13271/j.mpb.017.001039
8 薛圆.果蝇黄素单加氧酶对杀虫剂的解毒代谢以及芥子碱等对糖脂代谢的影响[D].江苏,南京:南京农业大学,2019.
XUE Y. Effects of Drosophila melanogaster flavin monooxygenases on detoxification of insecticides and sinapine on glycolipid metabolism[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
9 李洋,刁健,郝昕,等.PGP基因家族成员的结构和功能[J].东北林业大学学报,2021,49(3):126-131. DOI:10.13759/j.cnki.dlxb.2021.03.021
LI Y, DIAO J, HAO X, et al. Structure and function of PGP gene family members[J]. Journal of Northeast Forestry University, 2021, 49(3): 126-131. (in Chinese with English abstract)
doi: 10.13759/j.cnki.dlxb.2021.03.021
10 MARTIN F, DUBE F, LINDSJÖ O K, et al. Transcriptional responses in Parascaris univalent after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole[J]. Parasites & Vectors, 2020, 13(1): 342. DOI: 10.1186/s13071-020-04212-0
doi: 10.1186/s13071-020-04212-0
11 HOWE K L, BOLT B J, SHAFIE M, et al. WormBase ParaSite: a comprehensive resource for helminth genomics[J]. Molecular and Biochemical Parasitology, 2017(215): 2-10. DOI: 10.1016/j.molbiopara.2016.11.005
doi: 10.1016/j.molbiopara.2016.11.005
12 LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265-D268. DOI: 10.1093/nar/gkz991
doi: 10.1093/nar/gkz991
13 CANTELLI G, BATEMAN A, BROOKSBANK C, et al. The European Bioinformatics Institute (EMBL-EBI) in 2021[J]. Nucleic Acids Research, 2022, 50(D1): D11-D19. DOI: 10.1093/nar/gkab1127
doi: 10.1093/nar/gkab1127
14 DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss bioinformatics resource portal, as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1): W216-W227. DOI: 10.1093/nar/gkab225
doi: 10.1093/nar/gkab225
15 TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. DOI: 10.1093/molbev/msab120
doi: 10.1093/molbev/msab120
16 HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. DOI: 10.1093/bioinformatics/btu817
doi: 10.1093/bioinformatics/btu817
17 BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME Suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. DOI: 10.1093/nar/gkv416
doi: 10.1093/nar/gkv416
18 CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009
19 BLOM N, SICHERITZ-PONTÉN T, GUPTA R, et al. Prediction of post-translational glycosylation and phosphory-lation of proteins from the amino acid sequence[J]. Proteomics, 2004, 4(6): 1633-1649. DOI: 10.1002/pmic.200300771
doi: 10.1002/pmic.200300771
20 GEOURJON C, DELÉAGE G. SOPMA: significant improve-ments in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Bioinformatics, 1995, 11(6): 681-684. DOI: 10.1093/bioinformatics/11.6.681
doi: 10.1093/bioinformatics/11.6.681
21 YU N Y, WAGNER J R, LAIRD M R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes[J]. Bioinformatics, 2010, 26(13): 1608-1615. DOI: 10.1093/bioinformatics/btq249
doi: 10.1093/bioinformatics/btq249
22 BIASINI M, BIENERT S, WATERHOUSE A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(W1): W252-W258. DOI: 10.1093/nar/gku340
doi: 10.1093/nar/gku340
23 王步勇.松材线虫药剂处理转录组分析及ⅡS路径基因的功能研究[D].黑龙江,哈尔滨:东北林业大学,2017.
WANG B Y. Transcriptome analysis of Bursaphelenchus xylophilus under insecticides stress and functional analysis of ⅡS pathway related genes[D]. Harbin, Heilongjiang: Northeast Forestry University, 2017. (in Chinese with English abstract)
24 曾端香,余曦玥,于敬文,等.松材线虫病的检测及综合防治技术[J].中国农学通报,2022,38(4):86-91. DOI:10.11924/j.issn.1000-6850.casb2021-0992
ZENG D X, YU X Y, YU J W, et al. Detection and integrated control technology of Bursaphelenchus xylophilus [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 86-91. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-0992
25 GUJAR M R, STRICKER A M, LUNDQUIST E A. Flavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/netrin signaling and Rac GTPases[J]. PLoS Genetics, 2017, 13(8): e1006998. DOI: 10.1371/journal.pgen.1006998
doi: 10.1371/journal.pgen.1006998
[1] 王尤轩,王梦雨,李煜博,陶晗,夏楚楚,黄凯美,汪俏梅. 芥蓝Aux/IAA家族基因生物信息学与表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 314-324.
[2] 万发香,王连臻,高军. 茄子1-氨基环丙烷-1-羧酸合成酶基因的生物信息学及其响应逆境胁迫的表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 325-334.
[3] 李倬,陈朗,姜涛,刘丽霞,张丽,王瑞,李耀东. 牦牛DQA2基因单核苷酸多态性及其生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 376-382.
[4] 张丽,农伟伦,卢建雄,张国华,刘丽霞. 八眉猪FABPs主要家族基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 109-118.
[5] 张丽, 刘丽霞, 戴洪伟, 陈红, 王瑞, 岳炳辉. 静宁鸡肌肉生长抑制素基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 629-637.
[6] 马广莹,朱开元,史小华,邹清成,刘慧春,詹菁,田丹青. 红掌2个SOC1基因的克隆、序列与表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 289-297.
[7] 沈恩惠, 刘扬, 叶楚玉, 樊龙江. 植物非编码小RNA研究进展(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 370-378.
[8] 李姝江1, 朱天辉1*, 张兴华1,2. 拟松材线虫携带细菌对云南松的致病性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 146-154.
[9] 柯野, 曾松荣, 郑秋桦. 总状毛霉丝氨酸蛋白酶基因结构和功能的生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 370-376.
[10] 马 云,王云云,张晓婷,李 芬,王启钊,王新庄. 鸭PPARα基因结构及功能的生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 371-379.
[11] 周小东,沈富兵,郑崛村. β-苦瓜蛋白质分子结构模建研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 399-406.
[12] 张弢  向珣  叶纨芝  余小林  曹家树. 芜菁花粉发育相关基因BcMF2r的分子克隆及其生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2006, 32(6): 598-605.
[13] 蒋立琴  梁定东  郑经武  顾建锋  杨兰英. 利用rDNA的PCR-RFLP对伞滑刃属线虫群体的分子鉴别[J]. 浙江大学学报(农业与生命科学版), 2005, 31(2): 161-164.
[14] 董琦  郑树  徐伟珍  蔡善荣  姚克. 先天性白内障家系中γD晶体蛋白P23T突变意义的生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 109-113.