Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 614-624    DOI: 10.3785/j.issn.1008-9209.2021.10.211
资源利用与环境保护     
纤维素降解菌长枝木霉菌(Trichoderma longibrachiatum)ZJ-10的筛选及产酶条件优化
李子婧(),刘帆,汤胜,马庆旭,韩科峰(),吴良欢()
浙江大学环境与资源学院,浙江省农业资源与环境重点实验室,杭州 310058
Screening of cellulose-degrading fungus Trichoderma longibrachiatum ZJ-10 and optimization of enzyme production conditions
Zijing LI(),Fan LIU,Sheng TANG,Qingxu MA,Kefeng HAN(),Lianghuan WU()
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4000 KB)   HTML
摘要:

为解决畜禽废弃物及园林废弃物中纤维素降解难的问题,本试验采用刚果红染色法、滤纸崩解试验和测定内切葡聚糖酶(羧甲基纤维素酶)活力法从竹屑、枯枝烂叶、羊粪等废弃物中筛选高效的纤维素降解真菌,并对该真菌进行分子生物学鉴定。结果表明,本研究筛选到1株高效纤维素降解真菌,经形态学观察和菌种鉴定确定其为长枝木霉菌(Trichoderma longibrachiatum),并命名为T. longibrachiatum ZJ-10。单因素试验得出菌株ZJ-10最适产酶培养条件为接种量3%,初始pH 6.5,转速160 r/min,温度40 ℃,培养5 d,此时达到最大产酶活力;通过Plackett-Burman试验设计、Box-Benhnken最陡爬坡路径方法及响应面法得出菌株ZJ-10最适产酶培养基配方为NaCl 5 g/L、蛋白胨7 g/L、羧甲基纤维素钠12 g/L。在最适条件下测定的菌株ZJ-10的酶活力可达到80.32 U/mL,比优化前提高了26.45%。综上所述,本研究筛选出1株产内切葡聚糖酶活力较强的木霉真菌T. longibrachiatum ZJ-10,为畜禽及园林废弃物资源化利用提供了良好的菌种资源。

关键词: 木霉菌属纤维素真菌条件优化响应面法    
Abstract:

To improve the degradation efficiency of cellulose distributed in livestock, poultry wastes and garden wastes, a high-efficiency cellulose-degrading fungus which was from bamboo shavings, dead branches, and rotted leaves, and sheep dung was screened with Congo red staining, filter paper disintegration test and the endoglucanase [carboxyl methyl cellulose (CMC)] activity was tested. The physiological and molecular identification of the strain was carried out. The results showed that a high-efficiency cellulose-degrading fungus was screened in this study, which was identified as Trichoderma longibrachiatum by morphological observation and fungus species identification, and named as T. longibrachiatum ZJ-10. Single factor test showed that the conditions for achieving the maximum enzyme production activity showed as follows: 3% inoculation, initial pH 6.5, rotation speed of 160 r/min, 40 ℃, and cultured for 5 d. According to Plackett-Burman experimental design, Box-Benhnken steepest climbing path method and response surface methodology, the optimal enzyme production medium formula was 5 g/L NaCl, 7 g/L peptone, and 12 g/L CMC-Na. Under the optimal conditions, the CMC enzyme activity of strain ZJ-10 could reach 80.32 U/mL, which was 26.45% higher than that of the former optimization. In conclusion, strain of T. longibrachiatum ZJ-10 with strong CMC enzyme activity was screened in this study, which provides a good strain resource for the utilization of livestock, poultry and garden waste resources.

Key words: Trichoderma    cellulose    fungi    optimization of conditions    response surface methodology
收稿日期: 2021-10-21 出版日期: 2022-11-02
CLC:  X 713  
基金资助: 浙江省宁波市科技计划项目(202002N3106);国家重点研发计划项目(2020YFD1100402)
通讯作者: 韩科峰,吴良欢     E-mail: lizijing@zju.edu.cn;hkf1982@163.com;finm@zju.edu.cn
作者简介: 李子婧(https://orcid.org/0000-0002-2215-0128),E-mail:lizijing@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李子婧
刘帆
汤胜
马庆旭
韩科峰
吴良欢

引用本文:

李子婧,刘帆,汤胜,马庆旭,韩科峰,吴良欢. 纤维素降解菌长枝木霉菌(Trichoderma longibrachiatum)ZJ-10的筛选及产酶条件优化[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 614-624.

Zijing LI,Fan LIU,Sheng TANG,Qingxu MA,Kefeng HAN,Lianghuan WU. Screening of cellulose-degrading fungus Trichoderma longibrachiatum ZJ-10 and optimization of enzyme production conditions. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 614-624.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.10.211        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/614

菌株名称

Strain name

水解能力(H/C

Hydrolysis capacity (H/C)

滤纸崩解情况Disintegration of filter paper

滤纸分解率

Decomposition rate of filter paper/%

ZJ-11.71±0.01+++4.44±0.31
ZJ-21.26±0.03++1.63±0.08
ZJ-31.71±0.05+++5.49±0.30
ZJ-41.34±0.02+1.05±0.16
ZJ-51.33±0.04++1.75±0.10
ZJ-61.33±0.12++1.71±0.15
ZJ-71.85±0.02++++14.82±0.52
ZJ-81.55±0.03+1.28±0.06
ZJ-91.63±0.06+++6.42±0.13
ZJ-101.95±0.03+++++23.58±0.80
ZJ-111.37±0.03+1.22±0.12
ZJ-121.32±0.02+1.30±0.20
ZJ-131.56±0.03+++6.88±0.20
ZJ-141.36±0.03+1.44±0.18
ZJ-151.89±0.02+++++19.77±0.63
ZJ-161.36±0.05+1.24±0.35
ZJ-171.82±0.02++++11.98±0.43
表1  不同菌株的水解能力、滤纸崩解情况及分解率
图1  不同培养时间对纤维素降解真菌产酶的影响
图2  基于菌株ZJ-10及相关rDNA ITS序列的系统进化树
图3  接种量(A)、初始pH(B)、转速(C)、温度(D)对菌株ZJ-10产酶的影响

处理

Treatment

X1X2X3X4X5X6X7

CMC酶活力

CMC enzyme activity/(U/mL)

11-1-1-111-164.60
2111-1-11158.85
3-11-11-1-1151.63
41-11-1-1-1169.15
511111-1-163.60
611-11-11-158.94
7-111-11-1-169.05
8-1-11111167.96
9-1-111-11-175.43
101-1-111-1154.90
11-11-1-111156.53
12-1-1-1-1-1-1-165.18
效应 Effect-2.62-6.448.71-1.82-0.421.47-6.30
系数 Coefficient-1.31-3.224.36-0.91-0.210.73-3.15
T-1.87-4.606.23-1.30-0.301.04-4.50
P0.132 80.009 9**0.003 3**0.262 20.776 40.351 80.010 7*
R2 (R2Adj)0.956 2 (0.879 5)
表2  Plackett-Burman试验设计及各因素响应评价

试验号

Test No.

NaCl/(g/L)(A)

蛋白胨

Peptone/(g/L) (B)

CMC-Na/(g/L)(C)

CMC酶活力

CMC enzyme activity/(U/mL)

123861.16
234967.36
3451071.94
4561174.17
5671272.03
6781369.19
表3  NaCl、蛋白胨和CMC-Na最适质量浓度范围确定
试验号Test No.ABC

CMC酶活力

CMC enzyme activity/(U/mL)

方差分析 Analysis of variation

参量

Parameter

平方和

Sum of squares

F

F value

P

P value

1461062.31A53.8710.100.015 5*
2661066.31B137.6125.810.001 4**
3561172.20C220.9241.430.000 4**
4551057.29AB8.701.630.242 1
5571278.54AC4.280.800.399 8
6661272.85BC1.490.280.613 6
7561175.31A240.927.680.027 7*
8471164.21B282.5415.480.005 6**
9561174.12C214.372.700.144 6
10451159.41模型 Model578.5812.060.001 7**
11671175.61误差 Error37.32
12561174.29失拟项 Lack of fit29.074.700.084 6
13571064.91纯误差 Pure error8.25
14551268.48总和 Sum615.90
15461272.99R20.939 4
16651164.91R2Adj0.861 5
17561171.98
表4  Box-Benhnken试验结果与分析
图4  NaCl、蛋白胨和CMC-Na对CMC酶活力影响的响应面图
1 中华人民共和国国家统计局.中国统计年鉴:2020[M].北京:中国统计出版社,2020. DOI:10.23943/princeton/9780691179476.003.0005
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook: 2020[M]. Beijing: China Statistics Press, 2020. (in Chinese)
doi: 10.23943/princeton/9780691179476.003.0005
2 朱云芬,李蓉,向极钎,等.羊粪资源化利用的研究进展[J].湖北农业科学,2021,60(11):12-15. DOI:10.14088/j.cnki.issn0439-8114.2021.11.002
ZHU Y F, LI R, XIANG J Q, et al. Research advances in resources utilization of sheep manure[J]. Hubei Agricultural Sciences, 2021, 60(11): 12-15. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2021.11.002
3 张景强,林鹿,孙勇,等.纤维素结构与解结晶的研究进展[J].林产化学与工业,2008,28(6):109-114. DOI:10.3321/j.issn:0253-2417.2008.06.023
ZHANG J Q, LIN L, SUN Y, et al. Advance of studies on structure and decrystallization of cellulose[J]. Chemistry and Industry of Forest Products, 2008, 28(6): 109-114. (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-2417.2008.06.023
4 李芳,勇伟,白雪薇,等.添加微生物菌剂和尿素对落叶堆肥的影响[C]//北京园林学会,北京市园林绿化局,北京市公园管理中心.2011北京园林绿化与生物多样性保护.北京:科学技术文献出版社,2011:317-321.
LI F, YONG W, BAI X W, et al. Effect of adding microbial agents and urea on the composting of fallen leaves[C]//Beijing Society of Landscape Architecture, Beijing Bureau of Landscaping, Beijing Park Management Center. 2011 Landscaping and Biodiversity Conservation in Beijing. Beijing: Scientific and Technical Documentation Press, 2011: 317-321. (in Chinese)
5 SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China: potential challenges and development[J]. Renewable and Sustainable Energy Reviews, 2013, 22(8): 432-437. DOI:10.1016/j.rser.2013.02.003
doi: 10.1016/j.rser.2013.02.003
6 宁俊平,孙如玉,徐莹,等.纤维素降解菌研究综述[J].农家参谋,2021(3):117-118. DOI:10.5040/9781501338861.0018
NING J P, SUN R Y, XU Y, et al. Review of research on cellulose degrading bacteria[J]. The Farmers Consultant, 2021(3): 117-118. (in Chinese)
doi: 10.5040/9781501338861.0018
7 宫秀杰,钱春荣,于洋,等.近年纤维素降解菌株筛选研究进展[J].纤维素科学与技术,2021,29(2):68-77. DOI:10.16561/j.cnki.xws.2021.02.07
GONG X J, QIAN C R, YU Y, et al. Progress on screening of cellulose degrading strains in recent years[J]. Journal of Cellulose Science and Technology, 2021, 29(2): 68-77. (in Chinese with English abstract)
doi: 10.16561/j.cnki.xws.2021.02.07
8 王金明.高效纤维素降解真菌Aspergillus fumigatus YC2的产酶条件优化及转录组学分析[D].哈尔滨:东北农业大学,2020.
WANG J M. Fermentation condition optimization and transcriptome analysis of a efficient cellulose degrading fungus Aspergillus fumigatus YC2[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract)
9 张冬雪,文亚雄,罗志威,等.纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析[J].江西农业学报,2020,32(1):72-76. DOI:10.19386/j.cnki.jxnyxb.2020.01.12
ZHANG D X, WEN Y X, LUO Z W, et al. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw[J]. Acta Agriculturae Jiangxi, 2020, 32(1): 72-76. (in Chinese with English abstract)
doi: 10.19386/j.cnki.jxnyxb.2020.01.12
10 李佳腾,杨凡提,王世康,等.纤维素分解菌的筛选及杏鲍菇菌糠混菌发酵条件的优化[J].动物营养学报,2019,31(10):4802-4816. DOI:10.3969/j.issn.1006-267x.2019.10.046
LI J T, YANG F T, WANG S K, et al. Screening of cellulose-degradation strains and condition optimization of mixed strains fermentation of Pleurotus eryngii spent mushroom substrate[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4802-4816. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-267x.2019.10.046
11 马欣雨,孙丽娜,卢珊,等.秸秆降解菌的筛选及对秸秆的降解效果[J].生态学杂志,2020,39(4):1198-1205. DOI:10.13292/j.1000-4890.202004.012
MA X Y, SUN L N, LU S, et al. Screening of straw degrading microbial strains and their degradation effects[J]. Chinese Journal of Ecology, 2020, 39(4): 1198-1205. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202004.012
12 甄静,王继雯,谢宝恩,等.一株纤维素降解真菌的筛选、鉴定及酶学性质分析[J].微生物学通报,2011,38(5):709-714. DOI:10.13344/j.microbiol.china.2011.05.010
ZHEN J, WANG J W, XIE B E, et al. Isolation, identification of a cellulase-producing strain and characterization of its cellulase-producing capability[J]. Microbiology China, 2011, 38(5): 709-714. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2011.05.010
13 张玉云,丁轲,李旺,等.牛源纤维素降解菌的分离筛选与鉴定[J].河南科技大学学报(自然科学版),2021,42(5):72-77. DOI:10.15926/j.cnki.issn1672-6871.2021.05.012
ZHANG Y Y, DING K, LI W, et al. Isolation, screening and identification of cellulose degrading bacteria from cattle[J]. Journal of Henan University of Science and Technology (Natural Science), 2021, 42(5): 72-77. (in Chinese with English abstract)
doi: 10.15926/j.cnki.issn1672-6871.2021.05.012
14 诸葛诚祥.菌糠高效降解菌剂的研发及其在堆肥中的应用[D].杭州:浙江大学,2017.
ZHUGE C X. Research on high efficiency degrading microbial inoculum of spent mushroom substrate and its application in composting[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
15 GHOSE T K. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268.
16 魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
WEI J C. Handbook of Fungi Identification[M]. Shanghai: Shanghai Science and Technology Press, 1979. (in Chinese)
17 陶文斌,吴燕燕,李春生,等.响应面法优化腌制大黄鱼的低钠复合咸味剂配方[J].食品工业科技,2019,40(19):136-144. DOI:10.13386/j.issn1002-0306.2019.19.023
TAO W B, WU Y Y, LI C S, et al. Optimization of low-sodium compound salty agent formula for pickled Larimichthys crocea fillets by response surface methodology[J]. Science and Technology of Food Industry, 2019, 40(19): 136-144. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2019.19.023
18 许玉林,郑月霞,叶冰莹,等.一株纤维素降解真菌的筛选及鉴定[J].微生物学通报,2013,40(2):220-227. DOI:10.13344/j.microbiol.china.2013.02.006
XU Y L, ZHENG Y X, YE B Y, et al. Isolation and identification of a cellulose degrading fungi[J]. Microbiology China, 2013, 40(2): 220-227. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2013.02.006
19 ADSUL M G, BASTAWDE K B, VARMA A J, et al. Strain improvement of Penicilli janthinellum NCIM 1171 for increased cellulose production[J]. Bioresource Technology, 2007, 98(7): 1467-1473. DOI:10.1016/j.biortech.2006.02.036
doi: 10.1016/j.biortech.2006.02.036
20 ZHANG Q, LO C M, JU L K. Factors affecting foaming behavior in cellulose fermentation by Trichoderma reesei Rut C-30[J]. Bioresource Technology, 2007, 98(4): 753-760. DOI:10.1016/j.biortech.2006.04.006
doi: 10.1016/j.biortech.2006.04.006
21 白洪志,杨谦,王希国,等.纤维素降解菌绿色木霉C-08的筛选及酶学特性研究[J].安徽农业科学,2007(17):5033-5034. DOI:10.13989/j.cnki.0517-6611.2007.17.005
BAI H Z, YANG Q, WANG X G, et al. Screening of Trichoderma viridin C-08 decomposition by cellulose and study on enzymatic property[J]. Journal of Anhui Agricultural Sciences, 2007(17): 5033-5034. (in Chinese with English abstract)
doi: 10.13989/j.cnki.0517-6611.2007.17.005
22 宁露佳,刘倩楠,景雯,等.白酒糟纤维素降解菌的分离筛选及发酵条件优化[J].中国酿造,2021,40(5):119-123. DOI:10.11882/j.issn.0254-5071.2021.05.022
NING L J, LIU Q N, JING W, et al. Isolation, screening and fermentation conditions optimization of cellulose-degrading bacteria in distiller’s grains[J]. China Brewing, 2021, 40(5): 119-123. (in Chinese with English abstract)
doi: 10.11882/j.issn.0254-5071.2021.05.022
23 雷文平,吴诗敏,李彩虹,等.响应面法优化凝固型发酵椰奶工艺[J].中国酿造,2019,38(2):212-216. DOI:10.11882/j.issn.0254-5071.2019.02.041
LEI W P, WU S M, LI C H, et al. Process optimization of set-style fermented coconut milk by response surface methodology[J]. China Brewing, 2019, 38(2): 212-216. (in Chinese with English abstract)
doi: 10.11882/j.issn.0254-5071.2019.02.041
24 胡文兵,杨占威,陈慧,等.Plackett-Burman和Box-Behnken试验设计优化超声波-酶法提取青钱柳多糖工艺及结构初探[J].天然产物研究与开发,2017,29(4):671-679. DOI:10.16333/j.1001-6880.2017.4.024
HU W B, YANG Z W, CHEN H, et al. Optimization of ultrasonic and enzyme-assisted extraction of polysaccharides from Cyclocarya paliurus by Plackett-Burman and Box-Behnken experiment and analysis of its structure[J]. Natural Product Research and Development, 2017, 29(4): 671-679. (in Chinese with English abstract)
doi: 10.16333/j.1001-6880.2017.4.024
[1] 尤式备,徐佳慧,郭怡文,廖芳蕾,杨莉,陈文荣,郭卫东. 蓝莓根毛缺失的机制及内生菌根真菌的促生作用[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 417-427.
[2] 水燕,管政兵,叶俊贤,史永红,刘国锋,徐增洪. 克氏原螯虾i-型溶菌酶在巴斯德毕赤酵母中的高效胞外表达及其抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 526-532.
[3] 何亚涛,高丹丹,甘森宁,孙婷,蔡葵蒸,刘俊林. 怀地黄内生产红色素真菌血红红曲霉(Monascus sanguineus)的分离与鉴定[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 1-7.
[4] 罗龙皂,曾凡健,田光明. 藻-菌系统中微藻生长条件的响应面法优化[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 95-101.
[5] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[6] 冯国栋,许永锋,陈建烽,赵万忠,王欣,张小晟,江辉. 犹他游动放线菌SW1311 中阿库来菌素A 酰基酶在棘白菌素类抗真菌药物合成中的应用(英文).[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 416-424.
[7] 舒羚, 安毅, 王晓晗, 秦卫普, 杨琳, 刘向东. 选择吸附性活性炭颗粒的制备及性能[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 111-118.
[8] 林辉1, 马军伟1, 王群2, 赵宇华2*, 符建荣1*. 纤维素油脂生产菌株青霉P-2的筛选及其纤维素油脂统合加工行为(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 611-620.
[9] 张京平*, 朱建锡, 孙腾. 便携式苗木移植机设计及工作参数优化[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 231-236.
[10] 马小魁1*, 吴玲玲1, 吕婷婷1, 丁宁1, 周立辉2, 陈玲1, 吴正超1. 真菌参与石油类疏水化合物从非水相向水相的传质[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 65-74.
[11] 李艳丽, 陈列忠*. 聚合酶链反应-变性梯度凝胶电泳分析在毒死蜱胁迫下土壤真菌群落结构演替[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 381-386.
[12] 孙柘1, 邱涛1, 袁如月1, 钱梅双1, 肖厚荣2, 叶明1. 粒毛盘菌多糖脱蛋白方法及其条件优化[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 519-523.
[13] 张睿钦, 管斌, 孔青, 游泳, 吴继芹, 魏群. 雨生红球藻异养转化产虾青素的条件研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 624-630.
[14] 林梦南, 苏平, 应丽亚, 高宏建. 紫苏精油微波萃取工艺的响应面优化及其化学成分研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 677-683.
[15] 彭卫红, 邹辉琴, 王勇, 郭勇, 贾定洪. 疣孢霉粗多糖激发的3种真菌菌丝体蛋白质及酶变化[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 409-413.