Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (2): 141-153    DOI: 10.3785/j.issn.1008-9209.2021.07.121
园艺科学     
发光二极管日积累光照量对辣椒、黄瓜和生菜幼苗生长的影响
齐振宇1(),胡玉屏2,蔡溧聪2,董桑婕2,喻景权2,周艳虹2()
1.浙江大学农业试验站,杭州 310058
2.浙江大学农业与生物技术学院园艺系,杭州 310058
Effects of daily light integrals of light emitting diode on the growth of pepper, cucumber and lettuce seedlings
Zhenyu QI1(),Yuping HU2,Licong CAI2,Sangjie DONG2,Jingquan YU2,Yanhong ZHOU2()
1.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
2.Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4032 KB)   HTML
摘要:

以辣椒‘博辣红帅’、黄瓜‘津研4号’、生菜‘巴达维亚’为试验材料,设置160、200、240 μmol/(m2?s)3组不同的光量子通量密度(photosynthetic photon flux density, PPFD)和12、15、18 h/d 3组不同的光周期,共组成8组不同的日积累光照量(daily light integral, DLI)处理进行试验,以研究发光二极管(light emitting diode, LED)的DLI对辣椒、黄瓜和生菜幼苗生长的影响。结果表明:PPFD为160 μmol/(m2?s),光周期为15 h/d[DLI为8.6 mol/(m2?d)]的光照条件最适宜‘博辣红帅’辣椒幼苗的生长;PPFD为200 μmol/(m2?s),光周期为15 h/d[DLI为10.8 mol/(m2?d)]的光照条件最适宜‘津研4号’黄瓜幼苗的生长;PPFD为200 μmol/(m2?s),光周期为18 h/d[DLI为13.0 mol/(m2?d)]的光照条件最适宜‘巴达维亚’生菜幼苗的生长。本研究结果为蔬菜工厂化育苗提供了优化的LED光环境参数。

关键词: 辣椒黄瓜生菜光量子通量密度日积累光照量    
Abstract:

Taking pepper ‘Bola Hongshuai’, cucumber ‘Jinyan No. 4’ and lettuce ‘Batavia’ as experimental materials, the combinations of three groups of photosynthetic photon flux density (PPFD) [160, 200 and 240 μmol/(m2?s)] and three groups of photoperiod (12, 15, 18 h/d) were set up to form eight groups of different daily light integral (DLI) treatments to study the effects of DLIs of light emitting diode (LED) on the growth of their seedlings. The results showed that the optimal light conditions were PPFD of 160 μmol/(m2?s) with photoperiod of 15 h/d [DLI of 8.6 mol/(m2?d)] for ‘Bola Hongshuai’ pepper seedlings, PPFD of 200 μmol/(m2?s) with photoperiod of 15 h/d [DLI of 10.8 mol/(m2?d)] for ‘Jinyan No. 4’ cucumber seedlings, and PPFD of 200 μmol/(m2?s) with photoperiod of 18 h/d [DLI of 13.0 mol/(m2?d)] for ‘Batavia’ lettuce seedlings. The results provide optimized LED light environment parameters for vegetable seedling production.

Key words: pepper    cucumber    lettuce    photosynthetic photon flux density    daily light integral
收稿日期: 2021-07-12 出版日期: 2022-04-29
CLC:  S 62  
基金资助: 浙江省重点研发计划(2018C02010);国家现代产业技术体系建设项目(CARS-24-B-01);国家重点研发计划(2019YFD1001900)
通讯作者: 周艳虹     E-mail: qizhenyu@zju.edu.cn;yanhongzhou@zju.edu.cn
作者简介: 齐振宇(https://orcid.org/0000-0002-9518-4476),Tel:+86-571-88981767,E-mail:qizhenyu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
齐振宇
胡玉屏
蔡溧聪
董桑婕
喻景权
周艳虹

引用本文:

齐振宇,胡玉屏,蔡溧聪,董桑婕,喻景权,周艳虹. 发光二极管日积累光照量对辣椒、黄瓜和生菜幼苗生长的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 141-153.

Zhenyu QI,Yuping HU,Licong CAI,Sangjie DONG,Jingquan YU,Yanhong ZHOU. Effects of daily light integrals of light emitting diode on the growth of pepper, cucumber and lettuce seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 141-153.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.121        https://www.zjujournals.com/agr/CN/Y2022/V48/I2/141

图1  种子培育光照相对光谱曲线

处理

Treatment

光量子通量密度

PPFD/

(μmol/(m2?s))

光周期

Photoperiod/

(h/d)

日积累光照量

DLI/

(mol/(m2?d))

160/12160126.9
200/122008.6
240/1224010.4
160/15160158.6
200/1520010.8
240/1524013.0
160/181601810.4
200/1820013.0
表1  不同光量子通量密度和光周期组合设计

参量

Parameter

处理 Treatment
160/12200/12240/12160/15200/15240/15160/18200/18

株高

Plant height/cm

11.933f13.583e14.271d18.480a15.250c16.440b14.383d13.917de

茎粗

Stem diameter/mm

2.288cd2.335cd2.514b2.804a2.413bc2.268d2.314cd2.355cd

叶长

Leaf length/cm

7.150a6.620bc6.500bc6.967ab6.400c6.217cd5.260e5.883d

叶片数

Leaf number

6.833b7.167ab7.000ab7.667a7.330ab7.167ab7.500a7.500a

下胚轴长度

Length of hypocotyl/cm

3.333bc3.050de3.300bcd3.640a3.020e3.117cde3.480ab3.133cde

地上部鲜质量

Fresh mass above ground/g

2.082c1.971c2.801b3.433a2.025c2.050c2.110c2.189c

地下部鲜质量

Fresh mass under ground/g

0.467d0.684bc0.658bc0.853a0.485d0.344e0.717b0.598c

总鲜质量

Total fresh mass/g

2.549d2.655cd3.459b4.286a2.510d2.394d2.827c2.787c

地上部干质量

Dry mass above ground/g

0.229e0.332c0.402b0.519a0.280d0.222e0.355c0.333c

地下部干质量

Dry mass under ground/g

0.038cd0.055b0.060b0.087a0.047c0.036d0.059b0.057b

总干质量

Total dry mass/g

0.267e0.387c0.462b0.606a0.327d0.258e0.414bc0.390c

壮苗指数

Strong seedling index

0.095d0.131c0.150b0.194a0.107d0.077e0.135bc0.133c
表2  不同日积累光照量对辣椒幼苗生物量的影响
图2  不同日积累光照量条件下辣椒幼苗的生长表型
图3  不同日积累光照量对辣椒幼苗净光合速率(A)、气孔导度(B)和蒸腾速率(C)的影响短栅上不同小写字母表示在P<0.05水平差异有统计学意义,下同。
图4  不同日积累光照量对辣椒幼苗叶绿素a(A)、叶绿素b(B)、叶绿素a+b(C)和总胡萝卜素(D)含量的影响

参量

Parameter

处理 Treatment
160/12200/12240/12160/15200/15240/15160/18200/18

株高

Plant height/cm

3.750c3.733c3.717c5.350b6.450a5.440b3.650c3.600c

茎粗

Stem diameter/mm

3.272de3.104e3.072e3.497cd4.520a3.767bc3.308de3.880b

叶长

Leaf length/cm

8.600cd8.200cd7.950d9.017bc10.340a9.600ab8.483cd8.450cd

叶片数

Leaf number

2.500a2.000b2.167ab2.000b2.500a2.000b2.000b2.000b

下胚轴长度

Length of hypocotyl/cm

2.817a2.950a2.817a3.067a2.720ab2.717ab2.667ab2.333b

地上部鲜质量

Fresh mass above ground/g

3.848e5.663bc4.683de4.924cd8.936a6.401b6.520b6.135b

地下部鲜质量

Fresh mass under ground/g

0.739c1.278b1.437b1.194b2.654a2.417a2.304a2.359a

总鲜质量

Total fresh mass/g

4.587d6.941c6.120c6.118c11.590a8.818b8.824b8.494b

地上部干质量

Dry mass above ground/g

0.274e0.370de0.316de0.368de0.756a0.585b0.529bc0.432cd

地下部干质量

Dry mass under ground/g

0.031c0.036c0.061b0.074b0.127a0.125a0.114a0.109a

总干质量

Total dry mass/g

0.305f0.406ef0.377ef0.442de0.883a0.710b0.643bc0.541cd

壮苗指数

Strong seedling index

0.301c0.377c0.384c0.378c0.767a0.643b0.721ab0.720ab
表3  不同日积累光照量对黄瓜幼苗生物量的影响
图5  不同日积累光照量条件下黄瓜幼苗的生长表型
图6  不同日积累光照量对黄瓜幼苗净光合速率(A)、气孔导度(B)和蒸腾速率(C)的影响
图7  不同日积累光照量对黄瓜幼苗叶绿素a(A)、叶绿素b(B)、叶绿素a+b(C)和总胡萝卜素(D)含量的影响

参量

Parameter

处理 Treatment
160/12200/12240/12160/15200/15240/15160/18200/18

叶长

Leaf length/cm

5.233e6.000d7.180c10.283a9.367b9.250b9.400b9.516b

叶片数

Leaf number

4.167bc4.667ab4.167bc4.667ab3.833c5.167a4.167bc4.833ab

地上部鲜质量

Fresh mass above ground/g

0.482d0.614d2.174c2.930c2.672c2.605c3.380b4.921a

地下部鲜质量

Fresh mass under ground/g

0.061e0.107e0.298cd0.257d0.307cd0.343cd0.458b0.992a

总鲜质量

Total fresh mass/g

0.543e0.721e2.472d3.187c2.979c2.948c3.838b5.913a

地上部干质量

Dry mass above ground/g

0.024e0.034e0.079d0.109c0.118c0.125c0.156b0.225a

地下部干质量

Dry mass under ground/g

0.005e0.006e0.014d0.016d0.015d0.020c0.026b0.044a

总干质量

Total dry mass/g

0.029e0.040e0.093d0.125cd0.133c0.145c0.182b0.269a
表4  不同日积累光照量对生菜幼苗生物量的影响
图8  不同日积累光照量条件下生菜幼苗的生长表型
图9  不同日积累光照量对生菜幼苗净光合速率(A)、气孔导度(B)和蒸腾速率(C)的影响
图10  不同日积累光照量对生菜幼苗叶绿素a(A)、叶绿素b(B)、叶绿素a+b(C)和总胡萝卜素(D)含量的影响
1 魏灵玲,杨其长,刘水丽.密闭式植物种苗工厂的设计及其光环境研究[J].中国农学通报,2007,23(12):415-419. DOI:10.3969/j.issn.1000-6850.2007.12.089
WEI L L, YANG Q C, LIU S L. Design of the closed plant factory and study on the artificial lighting environment[J]. Chinese Agricultural Science Bulletin, 2007, 23(12): 415-419. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2007.12.089
2 TOYOKI K. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory[J]. Physical and Biological Sciences, 2013, 89(10): 447-461. DOI:10.2183/pjab.89.447
doi: 10.2183/pjab.89.447
3 周恺.植物工厂条件下氮素与光照互作对雾培生菜产量和抗氧化营养品质的影响[D].杭州:浙江大学,2016.
ZHOU K. The effect of interaction between nitrogen and light on the yield and antioxidant nutritional quality of lettuce in aerosol culture under plant factory conditions[D]. Hangzhou: Zhejiang University, 2016. (in Chinese with English abstract)
4 MORROW R C. LED lighting in horticulture[J]. HortScience, 2008, 43(7): 1947-1950. DOI:10.21273/HORTSCI.43.7.1947
doi: 10.21273/HORTSCI.43.7.1947
5 MARCELIS L F M, BROEKHUIJSEN A G M, MEINEN E, et al. Quantification of the growth response to light quantity of greenhouse-grown crops[J]. Acta Horticulturae, 2006, 711: 97-103. DOI:10.17660/ActaHortic.2006.711.9
doi: 10.17660/ActaHortic.2006.711.9
6 季方,甘佩典,刘男,等.LED光质和日累积光照量对番茄种苗生长及能量利用效率的影响[J].农业工程学报,2020,36(22):231-238. DOI:10.11975/j.issn.1002-6819.2020.22.026
JI F, GAN P D, LIU N, et al. Effects of LED light quality and daily cumulative light intensity on tomato seedling growth and energy utilization efficiency[J]. Transactions of the CSAE, 2020, 36(22): 231-238. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.22.026
7 FU W G, LI P P, WU Y Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce[J]. Scientia Horticulturae, 2012, 135: 45-51. DOI:10.1016/j.scienta.2011.12.004
doi: 10.1016/j.scienta.2011.12.004
8 杨振超,何蔚,牟孙涛,等.不同光周期和红蓝光质配比对辣椒幼苗生长发育的影响[J].农业工程学报,2017,33(17):173-180. DOI:10.11975/J.ISSN.1002-6819.2017.17.023
YANG Z C, HE W, MOU S T, et al. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs[J]. Transactions of the CSAE, 2017, 33(17): 173-180. (in Chinese with English abstract)
doi: 10.11975/J.ISSN.1002-6819.2017.17.023
9 罗鑫辉,刘明月,刘玉兵,等.光质对辣椒幼苗生长、光合特性及氮代谢的影响[J].中国蔬菜,2020(8):33-40.
LUO X H, LIU M Y, LIU Y B, et al. Effects of light quality on the growth, photosynthetic characteristics and nitrogen metabolism of pepper seedlings[J]. Chinese Vegetables, 2020(8): 33-40. (in Chinese with English abstract)
10 ZHA L Y, LIU W K. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LED[J]. Horticulture, Environment and Biotechnology, 2018, 59(4): 511-518. DOI:10.1007/s13580-018-0048-5
doi: 10.1007/s13580-018-0048-5
11 CARVALHO R F, TAKAKI M, AZEVEDO R A. Plant pigments: the many faces of light perception[J]. Acta Physiologiae Plantarum, 2011, 33(2): 241-248. DOI:10.1007/s11738-010-0533-7
doi: 10.1007/s11738-010-0533-7
12 JIAO Y, LAU O S, DENG X. Light-regulated transcriptional networks in higher plants[J]. Nature Reviews Genetics, 2007, 8(3): 217-230. DOI:10.1016/S0924-4247(98)00216-7
doi: 10.1016/S0924-4247(98)00216-7
13 SAGO Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce[J]. HortScience, 2016, 51(9): 1087-1091. DOI:10.21273/HORTSCI10668-16
doi: 10.21273/HORTSCI10668-16
14 周成波,刘文科,查凌雁,等.LED红蓝光强对水培生菜生长以及有机碳和自毒物质分泌的影响[J].植物生理学报,2019,55(4):466-474. DOI:10.13592/j.cnki.ppj.2019.0080
ZHOU C B, LIU W K, ZHA L Y, et al. Effects of LED intensity of red and blue light on the growth of hydroponic lettuce and the secretion of organic carbon and autotoxic substances[J]. Plant Physiology Journal, 2019, 55(4): 466-474. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2019.0080
15 周华,欧阳雪灵,刘淑娟,等.LED光强和光质对“余干”辣椒幼苗生长和形态的影响[J].北方园艺,2016(12):40-43. DOI:10.11937/bfyy.201612011
ZHOU H, OUYANG X L, LIU S J, et al. Effects of LED light intensity and light quality on the growth and morphology of “Yugan” pepper seedlings[J]. Northern Horticulture, 2016(12): 40-43. (in Chinese with English abstract)
doi: 10.11937/bfyy.201612011
16 HWANG H, AN S, PHAM M D, et al. The combined conditions of photoperiod, light intensity, and air temperature control the growth and development of tomato and red pepper seedlings in a closed transplant production system[J]. Sustainability, 2020, 12: 9939. DOI:10.3390/su12239939
doi: 10.3390/su12239939
17 JI F, WEI S Q, LIU N, et al. Growth of cucumber seedlings in different varieties as affected by light environment[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(5): 73-78. DOI:10.25165/j.ijabe.20201305.5566
doi: 10.25165/j.ijabe.20201305.5566
18 林魁,黄枝,徐永,等.生菜苗期生长最优光照模式的模糊综合评判[J].热带作物学报,2018,39(4):702-708. DOI:10.3969/j.issn.1000-2561.2018.04.014
LIN K, HUANG Z, XU Y, et al. Fuzzy comprehensive evaluation of the optimal light mode for lettuce seedling growth[J]. Chinese Journal of Tropical Crops, 2018, 39(4): 702-708. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2018.04.014
[1] 柳霖,高峰,韩宁,郑太极,王天龙,周佩华,贺殊敏,王佳佳,傅民杰. 基于黑木耳菌渣的生菜栽培基质研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 492-506.
[2] 吕晓菡,蒋锦琳,杨静,陈建瑛,岑海燕,傅鸿妃,周毅飞. 基于特征波长建模的近红外光谱技术检测辣椒素含量[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 760-766.
[3] 蒋静静, 常晓晓, 胡晓辉. 供氮水平对基质袋培黄瓜养分吸收分配和产量的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 678-686.
[4] 丁文雅, 林若筠, 周伟伟, 周恺, 林咸永. 不同供氮水平下雾培与水培生菜生长和营养品质差异的比较[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 703-712.
[5] 吕晓菡, 方献平, 柴伟国, 马俊平, 周毅飞. 辣椒胞质不育系与保持系花药的细胞学和蛋白质组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 44-55.
[6] 徐超1, 沈凯2, 邵路亭2, 丁兴成1*. 辐照壳聚糖对辣椒抗性酶及生长的调节作用[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 497-503.
[7] 周胜军*, 张鹏, 朱育强, 陈新娟, 陈丽萍. 与黄瓜全雌性基因连锁的SSR分子标记[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 291-298.
[8] 李春英1*, 杨彦1, 李赫2, 李兰1, 励建荣3*. 辣椒叶提取物对α葡萄糖苷酶的抑制活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 173-177.
[9] 丁文雅,邬小撑,刘敏娜,王军君,林咸永. 不同营养液配方对雾培生菜生物量和营养品质的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 175-184.
[10] 景 然,陈新娟,朱育强,张 鹏,张玉琼,周胜军. 黄瓜白粉病抗性序列相关扩增多态性的分子标记研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 387-392.
[11] 尚海丽,周雪平,吴建祥;. 免疫斑点法和免疫捕获RT-PCR检测黄瓜绿斑驳花叶病毒[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 485-490.
[12] 王玉清 朱祝军 何勇. 外源一氧化氮对盐胁迫下黄瓜幼苗叶片膜脂过氧化的缓解作用 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(5): 533-538.
[13] 梁建根  张炳欣  喻景权  陈振宇. 植物根围促生细菌(PGPR)对黄瓜生长及生理生化特性的影响[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 202-206.
[14] 姚艳平 刘亚力 徐同等. 化学合成的几丁寡糖类似物诱导黄瓜对镰孢霉枯萎病的抗性[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 8-14.
[15] 方丽  刘海青  宋凤鸣  郑重. 农杆菌介导的黄瓜炭疽菌遗传转化[J]. 浙江大学学报(农业与生命科学版), 2006, 32(4): 360-366.