Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2005, Vol. 6 Issue ( 6): 11-    DOI: 10.1631/jzus.2005.B0508
    
Optimization of angiotensin I-converting enzyme (ACE) inhibition by rice dregs hydrolysates using response surface methodology
HE Guo-qing, XUAN Guo-dong, RUAN Hui, CHEN Qi-he, XU Ying
Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of a hydrolysate is determined by its peptide composition. However, the peptide composition of a hydrolysate depends on proteolytic enzyme and the hydrolysis conditions. In this study, the effect of process conditions on the ACE inhibitory activity of rice dregs hydrolyzed with a trypsin was investigated systematically using response surface methodology. It was shown that the ACE inhibitory activity of rice dregs hydrolysates could be controlled by regulation of five process conditions. Hydrolysis conditions for optimal ACE inhibition were defined using the response surface model of fractional factorial design (FFD), steepest ascent design, and central composite design (CCD).

Key wordsFood Science and Nutrition Angiotensin I-converting enzyme inhibitor      Rice dregs      Response surface methodology     
Received: 03 December 2004     
CLC:  TS201.1  
Cite this article:

HE Guo-qing, XUAN Guo-dong, RUAN Hui, CHEN Qi-he, XU Ying. Optimization of angiotensin I-converting enzyme (ACE) inhibition by rice dregs hydrolysates using response surface methodology. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6( 6): 11-.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.2005.B0508     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2005/V6/I 6/11

[1] Mei-lin Cui, Huan-yi Yang, Guo-qing He. Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(12): 998-1010.
[2] Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang. Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(4): 346-354.
[3] Xiao-xin Chen, Xiao-bing Wu, Wei-ming Chai, Hui-ling Feng, Yan Shi, Han-tao Zhou, Qing-xi Chen. Optimization of extraction of phenolics from leaves of Ficus virens[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(10): 903-915.
[4] Yun-jian Zhang, Qiang Li, Yu-xiu Zhang, Dan Wang, Jian-min Xing. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM)[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(2): 103-110.
[5] Yong-liang ZHUANG, Xue ZHAO, Ba-fang LI. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(8): 572-579.
[6] Yao-xing XU, Yan-li LI, Shao-chun XU, Yong LIU, Xin WANG, Jiang-wu TANG. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(7): 558-566.
[7] Dan YE, Zhi-nan XU, Pei-lin CEN. Medium optimization for enhanced production of cytosine-substituted mildiomycin analogue (MIL-C) by Streptoverticillium rimofaciens ZJU 5119[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(1): 77-84.
[8] ZHANG Jian, GAO Nian-fa. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2007, 8(2): 98-104.
[9] CHEN Qi-he, RUAN Hui, ZHANG Hai-feng, NI Hui, HE Guo-qing. Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2007, 8(11): 845-852.
[10] SONG Xiao-yan, CHEN Qi-he, RUAN Hui, HE Guo-qing, XU Qiong. Synthesis and paste properties of octenyl succinic anhydride modified early Indica rice starch[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(10): 4-.
[11] XU Ying, HE Guo-qing, LI Jing-jun. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6(11): 7-.