Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2013, Vol. 14 Issue (4): 346-354    DOI: 10.1631/jzus.B1200153
Articles     
Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology
Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A 24-membered ring macrolide compound, macrolactin A has potential applications in pharmaceuticals for its anti-infectious and antiviral activity. In this study, macrolactin A was produced by a marine bacterium, which was identified as Bacillus subtilis by 16S ribosomal RNA (rRNA) sequence analysis. Electrospray ionization mass spectrometry (ESI/MS) and nuclear magnetic resonance (NMR) spectroscopy analyses were used to characterize this compound. To improve the production, response surface methodology (RSM) involving Box-Behnken design (BBD) was employed. Faeces bombycis, the main by-product in sericulture, was used as a nitrogen source in fermentation. The interactions between three significant factors, F. bombycis, soluble starch, and (NH4)2SO4 were investigated. A quadratic model was constructed to fit the production and the factors. Optimum medium composition was obtained by analysis of the model. When cultivated in the optimum medium, the production of macrolactin A was increased to 851 mg/L, 2.7 times as compared to the original. This study is also useful to find another way in utilizing F. bombycis.

Key words24-membered ring macrolide      Enhancing production      Response surface methodology      Faeces bombycis      Marine bacterium     
Received: 30 May 2012      Published: 03 April 2013
CLC:  Q815  
Cite this article:

Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang. Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(4): 346-354.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1200153     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2013/V14/I4/346

[1] Mei-lin Cui, Huan-yi Yang, Guo-qing He. Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(12): 998-1010.
[2] Xiao-xin Chen, Xiao-bing Wu, Wei-ming Chai, Hui-ling Feng, Yan Shi, Han-tao Zhou, Qing-xi Chen. Optimization of extraction of phenolics from leaves of Ficus virens[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(10): 903-915.
[3] Yun-jian Zhang, Qiang Li, Yu-xiu Zhang, Dan Wang, Jian-min Xing. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM)[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(2): 103-110.
[4] Yong-liang ZHUANG, Xue ZHAO, Ba-fang LI. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(8): 572-579.
[5] Yao-xing XU, Yan-li LI, Shao-chun XU, Yong LIU, Xin WANG, Jiang-wu TANG. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(7): 558-566.
[6] Dan YE, Zhi-nan XU, Pei-lin CEN. Medium optimization for enhanced production of cytosine-substituted mildiomycin analogue (MIL-C) by Streptoverticillium rimofaciens ZJU 5119[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(1): 77-84.
[7] ZHANG Jian, GAO Nian-fa. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2007, 8(2): 98-104.
[8] CHEN Qi-he, RUAN Hui, ZHANG Hai-feng, NI Hui, HE Guo-qing. Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2007, 8(11): 845-852.
[9] SONG Xiao-yan, CHEN Qi-he, RUAN Hui, HE Guo-qing, XU Qiong. Synthesis and paste properties of octenyl succinic anhydride modified early Indica rice starch[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(10): 4-.
[10] XU Ying, HE Guo-qing, LI Jing-jun. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6(11): 7-.
[11] HE Guo-qing, XUAN Guo-dong, RUAN Hui, CHEN Qi-he, XU Ying. Optimization of angiotensin I-converting enzyme (ACE) inhibition by rice dregs hydrolysates using response surface methodology[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6( 6): 11-.