Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2010, Vol. 11 Issue (6): 415-424    DOI: 10.1631/jzus.A0900645
Civil and Mechanical Engineering     
Micromechanics-based analysis for predicting asphalt concrete modulus
Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The elastic modulus of asphalt concrete (AC) is an important material parameter for pavement design. The prediction and determination of elastic modulus, however, largely depends on laboratory tests which cannot reflect explicitly the influence of the microstructure of AC. To this end, a micromechanical model based on stepping scheme is adopted. Consideration is given to the influence of interfacial debonding and interlocking effect between the aggregates and asphalt mastic using the concept of effective bonding. Tests on asphalt mixture with various microstructures are conducted to verify the proposed approach. It is shown that the prediction is generally in agreement with experimental results. Parameters affecting the elastic modulus of AC are also discussed in light of the proposed method.

Key wordsAsphalt concrete (AC)      Micromechanics      Microstructure      Effective bonding      Optimum design      Elastic modulus     
Received: 08 October 2009      Published: 02 June 2010
CLC:  TU528.37  
Cite this article:

Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen. Micromechanics-based analysis for predicting asphalt concrete modulus. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 415-424.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0900645     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2010/V11/I6/415

[1] Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.
[2] Bao-long Li, Yi-fan Wang, Jing-hai Gong. Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 732-742.
[3] Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu. Microstructure and hardness of Cu-12% Fe composite at different drawing strains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 149-156.
[4] Jin Jiang, Jin-zhong Sun. Comparative study of static and dynamic parameters of rock for the Xishan Rock Cliff Statue[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 771-781.
[5] Wen-chen Xu, Hao Zhang, De-bin Shan. Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 738-743.
[6] Xue Wang, Liang-fei Zhan, Qian-gang Pan, Zhi-jun Liu, Hong Liu, Yong-shun Tao. Microstructure and creep properties of high Cr resisting weld metal alloyed with Co[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 756-760.
[7] Dan Ye, De-chang Jia, Zhi-hua Yang, Zhen-lin Sun, Peng-fei Zhang. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 761-765.
[8] Jing-yi Zhang, Feng Ye. Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 771-775.
[9] Jin-li HU, Jin-dong ZHANG, Liang MENG. Morphology evolution of two-phase Cu-Ag alloys under different conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 458-463.
[10] Zhi-yi HUANG, Zhong-xuan YANG, Zhen-yu WANG. Discrete element modeling of sand behavior in a biaxial shear test[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1176-1183.
[11] Qing-feng XUE, Sheng-gao LU. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1595-1600.
[12] Zheng Jian-Jun, Zhou Xin-Zhu. A numerical method for predicting the elastic modulus of concrete made with two different aggregates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 293-296.
[13] CAO Pin-lu, LIU Bao-chang, YIN Kun, ZHANG Zu-pei. Optimization design and residual thermal stress analysis of PDC functionally graded materials[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(8): 1318-1323.
[14] Williams R.A., Selomulya C., Jia X.. XMT enabled prediction of structure and permeability of flocculated structures and sediments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(12): 1-.
[15] CHEN Gang-jin, XIAO Hui-ming, ZHU Chun-feng. Charge dynamic characteristics in corona-charged polytetrafluoroethylene film electrets[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(8): 923-927.