Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (8): 622-629    DOI: 10.1631/jzus.A1400285
The Third Special Part-Issue on High-Speed Railways Technology (Guest Editor: You-tong FANG)     
Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys
Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu
1Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 2College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; 3College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  High strength and high conductivity Cu-based materials are key requirements in high-speed railway and high-field magnet systems. Cu-Fe alloys represent one of the most promising candidates due to the cheapness of Fe compared to Cu-Ag and Cu-Nb alloys. The high strength of Cu-Fe alloys primarily relies on the high density of the Cu/Fe phase interface, which is controlled by the co-deformation of the Cu matrix and Fe phase. In this study, our main attention was focused on the deformation behavior of the Fe phase using different scales. Cu-2.5% Fe-0.2% Cr (in weight) and Cu-6% Fe alloys were cast, annealed, and cold drawn into wires to investigate their microstructure and properties evolution. Cu-6% Fe contains Cu matrix and Fe, which become the primary particles in the micrometer scale after solution treatment. Cu-2.5% Fe-0.2% Cr contains Cu matrix and Fe precipitate particles in a nanometer scale after solution and aging treatment. The Fe primary particles were elongated and evolved into ribbons in a nanometer scale while the Fe precipitate particles were hardly deformed even at a drawing strain of 6. The reason for the unchanging characteristics of Fe precipitate particles is due to the size effect and incoherent phase interface of Cu matrix and Fe precipitate particles. The strength of both Cu-6% Fe and Cu-2.5% Fe-0.2% Cr alloys increases with the increase in the drawing strain. The electrical resistivity of Cu-6% Fe gradually increases and that of Cu-2.5% Fe-0.2% Cr keeps almost constant with the increase in the drawing strain.

Key wordsCopper alloys      Deformation      Microstructure      Strength     
Received: 22 September 2014      Published: 04 August 2015
CLC:  TG146.3  
Cite this article:

Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1400285     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I8/622

[1] Zi-qin Jiang, Yan-lin Guo, Ai-lin Zhang, Chao Dou, Cai-xia Zhang. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 20-32.
[2] Dong-Ming Yan, Hua-Wei Yin, Cheng-Lin Wu, Yan-Long Li, Jason Baird, Gen-Da Chen. Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 689-701.
[3] Yin Cheng, Hao Yu, Bao-lin Zhu, Dao-xin Wei. Laboratory investigation of the strength development of alkali-activated slag-stabilized chloride saline soil[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 389-398.
[4] Sr?an M. Bo?njak, Neboj?a B. Gnjatovi?, Sreten D. Savi?evi?, Milorad P. Panteli?, Ivan Lj. Milenovi?. Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 353-365.
[5] Lin Ba, Zhen-peng He, Yue-hui Liu, Gui-chang Zhang. Analysis of piston-pin lubrication considering the effects of structure deformation and cavitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(6): 443-463.
[6] Li-jun Hou, Zhi-yong Luan, Da Chen, Shi-lang Xu. Experimental study of the shear properties of reinforced ultra-high toughness cementitious composite beams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 251-264.
[7] Zi-qin Jiang, Yan-lin Guo, Xiao-an Wang, Bin Huang. Design method of the pinned external integrated buckling-restrained braces with extended core. Part I: theoretical derivation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 781-792.
[8] Zi-qin Jiang, Yan-lin Guo, Jing-zhong Tong, Xing Yuan. Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 793-804.
[9] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[10] Hui Liu, Ming-hua He, Jia Guo, Yong-jiu Shi, Zhao-xin Hou, Lu-lu Liu. Design-oriented modeling of circular FRP-wrapped concrete columns after sustained axial compression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 47-58.
[11] Chi Wang, Yong-fu Xu, Ping Dong. Working characteristics of concrete-cored deep cement mixing piles under embankments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 419-431.
[12] Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 282-290.
[13] Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu. Microstructure and hardness of Cu-12% Fe composite at different drawing strains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 149-156.
[14] Ke Zhang, Ping Cao, Rui Bao. Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 101-109.
[15] Jin-seong Lim, Tae-soo Kim, Seung-hun Kim. Ultimate strength of single shear bolted connections with cold-formed ferritic stainless steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 120-136.