Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue (12): 1-    DOI: 10.1631/jzus.2005.A1367
    
XMT enabled prediction of structure and permeability of flocculated structures and sediments
Williams R.A., Selomulya C., Jia X.
Institute of Particle Science & Engineering, School of Process, Environmental & Materials Engineering, University of Leeds, Leeds LS2 9JT, UK; ARC Centre for Functional Nanomaterials, School of Chemical Engineering & Industrial Chemistry, University of New South Wales, Sydney NSW 2052, Australia
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  3D visualisations of the microstructure of flocculated particulates and sediments using optical confocal laser microscopy and high resolution X-ray microtomography (XMT) methods are described. Data obtained from in-situ measurements should enable direct computation of the properties of solids assembly (shape, size, contact area) and their permeability to fluids. A specific application relating to the formation of silica aggregates is described from which the behaviour of sediments containing these materials can be predicted on the basis of a bench-top test and the use of a Lattice Boltzman simulation. It is proposed that the method can potentially be used to predict trends such as the filtration behaviour of porous structures under different states of compression. This offers a significant benefit in assisting the formulation design of flocculated materials pertinent to a number of industrial sectors wishing to design optimal filtration or relevant operations.

Key words Fluid flow      Imaging      Microstructure      Porous media      Visualization      Tomography     
Received: 08 August 2005     
CLC:  TB126  
Cite this article:

Williams R.A., Selomulya C., Jia X.. XMT enabled prediction of structure and permeability of flocculated structures and sediments. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(12): 1-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A1367     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I12/1

[1] Fu-you Tian, Lian-feng Huang, Li-wu Fan, Hong-liang Qian, Jia-xi Gu, Zi-tao Yu, Ya-cai Hu, Jian Ge, Ke-fa Cen. Pressure drop in a packed bed with sintered ore particles as applied to sinter coolers with a novel vertically arranged design for waste heat recovery[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 89-100.
[2] Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.
[3] Zhi-long Li, Zhi-jun Wu, Ya Gao, Wei-di Huang, Hui-feng Gong, Lin Zhang, Li-guang Li. Development and application of an automatic measurement method for nozzle orifice diameter and length[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 11-17.
[4] Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu. Microstructure and hardness of Cu-12% Fe composite at different drawing strains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 149-156.
[5] Jun-chun Zhang, Le-ming Cheng, Cheng-hang Zheng, Zhong-yang Luo, Ming-jiang Ni. Development of non-premixed porous inserted regenerative thermal oxidizer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 671-678.
[6] Xue-cheng Wu, Ying-chun Wu, Cong-chang Zhang, Guo-neng Li, Qun-xing Huang, Ling-hong Chen, Kun-zan Qiu, Hao Zhou, Ke-fa Cen. Fundamental research on the size and velocity measurements of coal powder by trajectory imaging[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 377-382.
[7] Zhi-jun Wu, Zhi-long Li, Wei-di Huang, Hui-feng Gong, Ya Gao, Jun Deng, Zong-jie Hu. Comparisons of nozzle orifice processing methods using synchrotron X-ray micro-tomography[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(3): 182-188.
[8] Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen. Micromechanics-based analysis for predicting asphalt concrete modulus[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 415-424.
[9] Wen-chen Xu, Hao Zhang, De-bin Shan. Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 738-743.
[10] Xue Wang, Liang-fei Zhan, Qian-gang Pan, Zhi-jun Liu, Hong Liu, Yong-shun Tao. Microstructure and creep properties of high Cr resisting weld metal alloyed with Co[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 756-760.
[11] Dan Ye, De-chang Jia, Zhi-hua Yang, Zhen-lin Sun, Peng-fei Zhang. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 761-765.
[12] Jing-yi Zhang, Feng Ye. Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 771-775.
[13] Cheng JIN, Si-ping CHEN, Zheng-di QIN. A new coding scheme in coded ultrasound using staggering repetition interval[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1213-1216.
[14] Ling WANG, Zhi-hua DING, Guo-hua SHI, Yu-dong ZHANG. In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 607-612.
[15] Jin-li HU, Jin-dong ZHANG, Liang MENG. Morphology evolution of two-phase Cu-Ag alloys under different conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 458-463.