Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2010, Vol. 11 Issue (10): 738-743    DOI: 10.1631/jzus.A1000138
    
Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region
Wen-chen Xu, Hao Zhang, De-bin Shan
Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Hot extrusion was conducted in the α+β phase region for promoting mechanical properties of Ti42Al9V0.3Y. The microstructures and tensile properties before and after hot extrusion were studied. The results show that the microstructure of the as-cast alloy mainly consists of massive γ phase in β matrix and the as-extruded alloy mainly consists of lamellar α2/γ, lamellar β/γ, and strip γ propagating from elongated β phase. In the as-cast alloy, the predominantly observed fracture mode is transgranular cleavage failure at room temperature and intergranular fracture at 650–750 °C. After hot extrusion, it transforms into transgranular cleavage-like failure, including translamellar cleavage and delamination. The excellent tensile properties of the as-extruded material are attributed to the obvious refined microstructure with broken YAl2 particles and the micro-crack shielding action of the TiAl lamellasome.

Key wordsTiAl alloy      Microstructure      Mechanical property      Hot extrusion     
Received: 02 April 2010      Published: 05 October 2010
CLC:  TG113.25  
Cite this article:

Wen-chen Xu, Hao Zhang, De-bin Shan. Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 738-743.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1000138     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2010/V11/I10/738

[1] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[2] Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.
[3] Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu. Microstructure and hardness of Cu-12% Fe composite at different drawing strains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 149-156.
[4] Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen. Micromechanics-based analysis for predicting asphalt concrete modulus[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 415-424.
[5] Xue Wang, Liang-fei Zhan, Qian-gang Pan, Zhi-jun Liu, Hong Liu, Yong-shun Tao. Microstructure and creep properties of high Cr resisting weld metal alloyed with Co[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 756-760.
[6] Dan Ye, De-chang Jia, Zhi-hua Yang, Zhen-lin Sun, Peng-fei Zhang. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 761-765.
[7] Jing-yi Zhang, Feng Ye. Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 771-775.
[8] Jin-li HU, Jin-dong ZHANG, Liang MENG. Morphology evolution of two-phase Cu-Ag alloys under different conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 458-463.
[9] Zhi-yi HUANG, Zhong-xuan YANG, Zhen-yu WANG. Discrete element modeling of sand behavior in a biaxial shear test[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1176-1183.
[10] Qing-feng XUE, Sheng-gao LU. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1595-1600.
[11] Shentu Bao-Qing, Li Ji-Peng, Weng Zhi-Xue. Additive effects of N,N,N′,N′-tetraalkyl terephthalamide on crystalline morphology and mechanical properties of polypropylene[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 330-334.
[12] Williams R.A., Selomulya C., Jia X.. XMT enabled prediction of structure and permeability of flocculated structures and sediments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(12): 1-.
[13] CHEN Gang-jin, XIAO Hui-ming, ZHU Chun-feng. Charge dynamic characteristics in corona-charged polytetrafluoroethylene film electrets[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(8): 923-927.
[14] QI Meng, LI Zong-jin, MA Bao-guo. Shrinkage and cracking behavior of high performance concretes containing chemical admixtures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2002, 3(2): 188-193.
[15] YAN Mi, LUO Wei, WU Zhen-tai. MICROSTRUCTURE OF AS-MELT SPUN Al-Cu-Mg-Fe-Ni ALLOY AND ITS VARIATION IN CONTINUOUS HEAT TREATMENT[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2001, 2(2): 121-127.