Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1558-1565    DOI: 10.3785/j.issn.1008-973X.2021.08.017
    
Characteristics of rotating gliding arc on nitrogen fixation
Hang CHEN(),Ang-jian WU*(),Jia-geng ZHENG,Xiao-dong LI,Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1214KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Rotating gliding arc (RGA) was applied to nitrogen fixation. Optical diagnosis, high speed photography and oscilloscope were used to investigate the physical characteristics of the N2/O2 discharge. The effects of discharge parameters and volume flow rates on vibrational temperature, rotational temperature and arc characteristics were analyzed, which influenced the nitrogen fixation performance of RGA. Results show that NOx of high concentration was produced in the discharge process, and typical NO-γ, N2 (C-B) and N2+ (B-X) bands were detected by optical diagnosis. The increase of oxygen volume fraction would raise the vibrational temperature of nitrogen, accompanied by the rise of NOx concentration. Higher oxygen volume fraction (10%~40%) reached better output while led to instability of discharge. The mixture of 20% oxygen volume fraction or the air could be the most optimum gas supply to reach better nitrogen fixation performance.



Key wordsrotating gliding arc      plasma      nitrogen fixation      optical diagnosis      high-speed photography     
Received: 01 February 2021      Published: 01 September 2021
CLC:  TK 227  
Fund:  国家自然科学基金青年科学基金资助项目(51806193);国家自然科学基金资助项目(51976191)
Corresponding Authors: Ang-jian WU     E-mail: chenhangtry@zju.edu.cn;wuaj@zju.edu.cn
Cite this article:

Hang CHEN,Ang-jian WU,Jia-geng ZHENG,Xiao-dong LI,Jian-hua YAN. Characteristics of rotating gliding arc on nitrogen fixation. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1558-1565.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.017     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1558


旋转滑动弧等离子体固氮的物理特性

采用旋转滑动弧等离子体(RGA)进行固氮实验研究. 为了考察在N2/O2气氛下放电的物理特性,利用光谱仪、高速摄影仪、示波器等进行研究,考察放电参数、气体体积流量对于氮气的振动温度、氮气的转动温度和电弧特性的影响,以及以上因素对于RGA固氮效果的综合影响. 实验结果表明,放电过程可以生产大量NOx气体,通过光谱检测可以清晰观测到NO的γ带系、氮气第二正带系和氮气离子第一负带系. 增加放电的氧气体积分数,氮气的振动温度将升高,并伴随着固氮产出的提高;在一定范围内(10%~40%),氧气体积分数提升在提升固氮效果的同时,对放电稳定性有不利影响. 综合分析表明,接近空气的放电气氛(氧气体积分数为20%)或直接采用空气放电,能够实现旋转滑动弧等离子体放电固氮的最佳效果.


关键词: 旋转滑动弧,  等离子体,  固氮,  光谱分析,  高速摄影 
Fig.1 Experimental scheme of RGA system used for nitrogen fixation
Fig.2 Typical emission spectra of discharges with various supply gas    
Fig.3 N2+ first negative system and N2 second positive system at oxygen volume fraction of 20% and 40%
$\varphi({\rm{O}}_2) $/% Tvib/K Trot/K $\varphi({\rm{NO}}_x) $/%
10 5290 2500 0.9617
20 5900 2170 1.0320
30 6880 2000 1.0513
40 7280 1950 1.1349
Tab.1 Vibrational temperature, rotational temperature of N2 and NOx volume fraction at different oxygen volume fractions (volume flow rate of 6 L/min)
Fig.4 Effect of volume flow rate on vibrational temperature and nitrogen fixation output at oxygen volume fraction of 20%
Fig.5 Dynamic characteristics captured by high speed camera at gas volume flow rate of 6 L/min, with oxygen volume fraction of 20% and 30%
Fig.6 Electrical characteristics of RGA at different oxygen volume fractions
Fig.7 Air discharge output at different applied voltages with gas volume flow rate of 6 L/min
[1]   PATIL B S, PEETERS F J J, VAN ROOIJ G J, et al Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant[J]. AIChE Journal, 2018, 64 (2): 526- 537
doi: 10.1002/aic.15922
[2]   SCHROCK R R Reduction of dinitrogen[J]. Proceedings of the National Academy of Sciences, 2006, 103 (46): 17087
doi: 10.1073/pnas.0603633103
[3]   CHERKASOV N, IBHADON A O, FITZPATRICK P A review of the existing and alternative methods for greener nitrogen fixation[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 24- 33
doi: 10.1016/j.cep.2015.02.004
[4]   PATIL B S, CHERKASOV N, LANG J, et al Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides [J]. Applied Catalysis B: Environmental, 2016, 194: 123- 133
doi: 10.1016/j.apcatb.2016.04.055
[5]   INGELS R, GRAVES D Improving organic fertilizer and nitrogen use efficiency via air plasma and distributed renewable energy[J]. Plasma Medicine, 2016, 5: 257- 270
[6]   朱凤森, 张浩, 严建华, 等 磁旋滑动弧促进甲烷部分氧化重整制氢[J]. 高电压技术, 2017, 43 (6): 1893- 1900
ZHU Feng-sen, ZHANG Hao, YAN Jian-hua, et al Rotating gliding arc assisted methane partial oxidation for hydrogen production[J]. High Voltage Engineering, 2017, 43 (6): 1893- 1900
[7]   GRAVES D B, BAKKEN L B, JENSEN M B, et al Plasma activated organic fertilizer[J]. Plasma Chemistry and Plasma Processing, 2018, 39 (1): 1- 19
doi: 10.1007/s11090-018-9944-9
[8]   AZIZOV R I, ZHIVOTOV V K, KROTOV M, et al Synthesis of nitrogen oxides in a nonequilibrium microwave discharge under electron-cyclotron resonance conditions[J]. Khimiya Vysokikh Energii, 1980, 14: 366- 368
[9]   YANG J, LI T, CHONGSHAN Z, et al Nitrogen fixation in water using air phase gliding arc plasma[J]. Journal of the Electrochemical Society, 2016, 163: 288- 292
doi: 10.1149/2.0221610jes
[10]   MALIK M Nitric oxide production by high voltage electrical discharges for medical uses: a review[J]. Plasma Chemistry and Plasma Processing, 2016, 36: 737- 766
doi: 10.1007/s11090-016-9698-1
[11]   LINDSAY A, BYRNS B, KING W, et al Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge[J]. Plasma Chemistry and Plasma Processing, 2014, 34: 1271- 1290
doi: 10.1007/s11090-014-9573-x
[12]   BRISSET J L, PAWLAT J Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2016, 36: 355- 381
doi: 10.1007/s11090-015-9653-6
[13]   THIRUMDAS R, KOTHAKOTA A, ANNAPURE U, et al Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture[J]. Trends in Food Science & Technology, 2018, 77: 21- 31
[14]   胡辉, 杨旗, 包滨, 等 合成医用NO的等离子体温度的光谱测量与计算[J]. 高电压技术, 2009, 35 (2): 319- 323
HU Hui, YANG Qi, BAO Bin, et al Spectrum measurement and calculation of plasma temperature for generation medicinal inhaled nitric oxide[J]. High Voltage Engineering, 2009, 35 (2): 319- 323
[15]   MEI D, LIU S, WANG Y, et al Enhanced reforming of mixed biomass tar model compounds using a hybrid gliding arc plasma catalytic process[J]. Catalysis Today, 2019, 337: 225- 233
doi: 10.1016/j.cattod.2019.05.046
[16]   ZHANG H, LI L, XU R, et al Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor [J]. Waste Disposal & Sustainable Energy, 2020, 2: 139- 150
[17]   杜长明, 李俊岭, 严建华 滑动弧放电等离子体去除甲苯的实验研究[J]. 高电压技术, 2008, (3): 512- 516
DU Chang-ming, LI Jun-ling, YAN Jian-hua Removal of toluene by gliding arc discharge plasma[J]. High Voltage Engineering, 2008, (3): 512- 516
[18]   朱凤森. 旋转滑动弧等离子体裂解生活垃圾气化焦油化合物的基础研究[D]. 杭州: 浙江大学, 2018.
ZHU Feng-sen. Fundamental research of decomposition of tar compounds from the gasification of municipal solid waste by rotating gliding arc plasma[D]. Hangzhou: Zhejiang University, 2018.
[19]   张浩. 协同驱动旋转滑动弧温等离子体重整甲烷/甲醇制氢基础研究[D]. 杭州: 浙江大学, 2016.
ZHANG Hao. Fundamental research of rotating gliding arc warm plasma assisted methane/methanol reforming for hydrogen production[D]. Hangzhou: Zhejiang University, 2016.
[20]   谢维杰. 光谱解析低温等离子体中O2, N2, CO2的活性中间体及其环境化学行为[D]. 上海: 上海交通大学, 2008.
XIE Wei-jie. Spectroscopic diagnostics of active species and their environmental chemical process of O2, N2, CO2 in cold plasma[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[21]   MARINOV D, GUAITELLA O, ROUSSEAU A, et al Production of molecules on a surface under plasma exposure: example of NO on pyrex[J]. Journal of Physics D Applied Physics, 2010, 43: 115203
doi: 10.1088/0022-3727/43/11/115203
[22]   GOMES A M, BACRI J, SARRETTE J P, et al Measurement of heavy particle temperature in a radiofrequency air discharge at atmospheric pressure from the numerical simulation of the NO γ system [J]. Journal of Analytical Atomic Spectrometry, 1992, 7: 1103- 1109
doi: 10.1039/ja9920701103
[23]   LAUX C O, SPENCE T G, KRUGER C H, et al Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science and Technology, 2003, 12 (2): 125- 138
doi: 10.1088/0963-0252/12/2/301
[24]   WU A, ZHANG H, LI X, et al Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge[J]. IEEE Transactions on Plasma Science, 2015, 43: 836- 845
doi: 10.1109/TPS.2015.2469875
[25]   GATILOVA L V, ALLEGRAUD K, GUILLON J, et al NO formation mechanisms studied by infrared laser absorption in a single low-pressure plasma pulse[J]. Plasma Sources Science and Technology, 2007, 16 (1): 107- 114
doi: 10.1088/0963-0252/16/1/S12
[26]   RUSANOV V D, FRIDMAN A A, SHOLIN G V The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules[J]. Soviet Physics Uspekhi, 1981, 24 (6): 447- 474
doi: 10.1070/PU1981v024n06ABEH004884
[27]   WANG W, PATIL B, HEIJKERS S, et al Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling[J]. ChemSusChem, 2017, 10 (10): 2145- 2157
doi: 10.1002/cssc.201700095
[28]   何立明, 张达, 陈一, 等 三维旋转滑动弧等离子体助燃激励器的光谱特性实验[J]. 空军工程大学学报: 自然科学版, 2017, 18 (4): 1- 6
HE Li-ming, ZHANG Da, CHEN Yi, et al An experiment of spectral characteristics on plasma-assisted combustion with 3d rotating gliding arc discharge[J]. Journal of Air Force Engineering University: Natural Science Edition, 2017, 18 (4): 1- 6
doi: 10.3969/j.issn.1009-3516.2017.04.001
[1] Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
[2] XU Hui, CAI Yi xi, LI Xiao hua, SHI Yun xi, LI Wei jun. Experimental study on reduction of particle and nitrogen oxide emissions of diesel engine by non-thermal plasma[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2418-2423.
[3] QIU Kun zan, GENG Xue wei, CAI Yu xiang, ZHU Xin bo, ZHENG Cheng hang, GAO Xiang. Performance evaluation of hybrid system comprising plasma and V2O5 WO3/TiO2 catalysts for odor gas decomposition[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 63-69.
[4] ZHANG Lian-cheng, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Effects of hydrostatic pressure on pulsed discharge and deep-towed seismic source[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1395-1400.
[5] ZHENG Chao, XU Yu-zhen, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Surface and water disinfection by pulsed plasma jet[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1329-1335.
[6] SHAO Zhen-hua, WEI Bo-lun, YE Zhi-ping, HE Yi, SHI Yao. Treatment of exhaust gas from spray paint process with plasma-photocatalytic method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1127-1131.
[7] TAN Chao, WEI Zheng-ying, HU Fu-sheng, LI Ben-qiang, HAN Zhi-hai. Numerical analysis and experimental study of atmospheric plasma spray process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2284-2292.
[8] ZHANG Yun-qing, LI Xiao-dong, DU Chang-ming, SUN Xiao-ming, REN Yong, YAN Ji. Analysis of electical parameter and image of rotary gliding arc driven by magnetic field[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 687-691.
[9] CHEN Yong-duo, WANG Xiao-chen, LI Ying, ZHU An-na,LIU Zhen, YAN Ke-ping. Decontamination of dimethyl methylphosphonate aqueous solution with Fenton supported by plasma[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2195-2201.
[10] NI Ming-jiang, CHENG Kui, YU Liang, LI Xiao-dong, LU Sheng-yong, YAN Jian-hua. Removal of PCDD/Fs from fly ash using reverse vortex plasma[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 584-589.
[11] CHEN Hui-bin, WANG Xiao-ping, WU Hong-wei, ZHU Yan, LI Ya-ping. Application of SPR detector for flow analysis system[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1480-1484.
[12] PENG Sheng-hua, ZHANG Xin, HE Jian-jun. Argon plasma induced quantum well intermixing technology[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1057-1061.
[13] WANG Qin, YAN Jian-hua, PAN Xin-chao, CHI Yong, GAO Fei. Vitrification of MSWI fly ash using direct current double arc plasma[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 141-145.
[14] Yan-Jian-Hua, BAO Zheng, LI Xiao-Dong, CEN Ge-Fa. Gliding arc discharge plasma assisted reforming of methane into synthesis gas[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 505-509.
[15] YANG Jian-tao, PAN Hua, CHEN Jie, SU Qing-fa, WANG Da-hui, SHI Yao. Two-stage system of non-thermal plasma and adsorption for
decomposition of hydrogen sulfide
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2411-2415.