Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 578-585    DOI: 10.3785/j.issn.1008-973X.2021.03.019
    
Improvements of non-uniform distribution of tube wall temperatures in circulating fluidized bed boiler’s external heat exchangers
Li NIE1,2(),Run-xia CAI3,Jia-yi LU2,*(),Wei CHENG2,Wen-jie ZHANG2,Li-ming GONG2,Da-yong XUE2,Man ZHANG3,Hai-rui YANG3,Jun-fu LV3
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Clean Combustion and Flue Gas Purification Key Laboratory of Sichuan Province, Chengdu 611731, China
3. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
Download: HTML     PDF(1299KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A wall temperature distribution of the external heat exchanger of 600 MW supercritical circulating fluidized bed boiler was reproduced by numerical calculation, in order to solve the wall temperature deviation of the external heat exchanger of 660 MW ultra supercritical circulating fluidized bed boiler. The result was applied to the calculation of wall temperature of the same size external heat exchanger of ultra-supercritical circulating fluidized bed boiler. By throttling the working medium of three tube platens near side wall, the calculated wall temperature deviation of external heat exchanger of ultra-supercritical circulating fluidized bed boiler was solved. The wall temperature deviation of heating surface could be controlled within 30°C to keep safe operation of heating surface tubes. Experimental results show that the heat transfer coefficient of the particle side presents a saddle shaped bimodal distribution along the width direction of the external heat exchanger, and the maximum value of the heat transfer coefficient appear at about 0.2 times width near the side wall. By adjusting the gas velocity in the side wall area, the heat transfer coefficient can be improved, so as to provide guidance for slowing down the local deviation in the operation process.



Key wordsultra supercritical      circulating fluidized bed      boiler      external heat exchanger      tube wall temperature deviation     
Received: 10 February 2020      Published: 25 April 2021
CLC:  TK 229.6  
Fund:  国家重点研发计划资助项目(2016YFB0600204)
Corresponding Authors: Jia-yi LU     E-mail: niel@dbc.com.cn;lujy@dbc.com.cn
Cite this article:

Li NIE,Run-xia CAI,Jia-yi LU,Wei CHENG,Wen-jie ZHANG,Li-ming GONG,Da-yong XUE,Man ZHANG,Hai-rui YANG,Jun-fu LV. Improvements of non-uniform distribution of tube wall temperatures in circulating fluidized bed boiler’s external heat exchangers. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 578-585.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.019     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/578


循环流化床外置换热器壁温偏差改进措施

为了解决660 MW超超临界循环流化床锅炉外置换热器中受热面的壁温偏差问题,通过数值计算,复现600 MW超临界循环流化床锅炉外置换热器壁温分布,并将该方法应用到相同尺寸的超超临界循环流化床锅炉外置换热器壁温计算中. 通过对边壁区域3片管屏工质节流,从工质侧解决超超临界循环流化床锅炉外置换热器壁温偏差问题,使受热面计算壁温偏差控制在30°C以内,实现受热面管材安全运行. 通过冷态试验,发现颗粒侧传热系数沿外置换热器宽度方向呈现马鞍形的双峰分布,传热系数最大值出现在距离边壁约0.2倍宽度范围内,通过调整边壁区域气体速度可以提高该区域的传热系数,为运行过程减缓局部偏差提供参考.


关键词: 超超临界,  循环流化床,  锅炉,  外置换热器,  壁温偏差 
Fig.1 Wall temperature deviation of high temperature rehearter external heat exchanger of 600 MW CFB boiler
Fig.2 Schematic diagram of external heat exchanger of CFB boiler
Fig.3 Schematic diagram of cold test rig of external heat exchanger
Fig.4 Structure diagram of external heat exchanger test device
Fig.5 Schematic diagram of test heat transfer probe
Fig.6 Comparison between calculated value and measured value of wall temperature external heat exchanger on 600 MW CFB boiler
Fig.7 Wall temperature distribution of external heat exchanger of ultra supercritical CFB boiler after throttling
Fig.8 Influence of fluidization velocity of external heat exchanger on the distribution of heat transfer coefficient
Fig.9 Curve of resistance of air distribution plate of external heat exchanger with different air speed
Fig.10 Influence of bed inventory of external heat exchanger on the distribution of heat transfer coefficient
Fig.11 Influence of adjusting air distribution on heat transfer coefficient of external heat exchanger
[1]   YUE G, CAI R, LU J, et al From a CFB reactor to a CFB boiler–the review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology, 2017, 316 (1): 18- 28
[2]   程乐鸣, 周星龙, 郑成航, 等 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28 (6): 817- 826
CHENG Le-ming, ZHOU Xing-long, ZHENG Cheng-hang, et al Development of large-scale circulating fluidized bed boiler[J]. Power Engineering, 2008, 28 (6): 817- 826
[3]   宋畅, 吕俊复, 杨海瑞, 等 超临界及超超临界循环流化床锅炉技术研究与应用[J]. 中国电机工程学报, 2018, 38 (2): 338- 347
SONG Chang, LYU Jun-fu, YANG Hai-rui, et al Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Proceedings of the CSEE, 2018, 38 (2): 338- 347
[4]   黄中, 杨娟, 车得福 大容量循环流化床锅炉技术发展应用现状[J]. 热力发电, 2019, 48 (6): 1- 8
HUANG Zhong, YANG Juan, CHE De-fu Application and development status of large-scale CFB boilers[J]. Thermal Power Generation, 2019, 48 (6): 1- 8
[5]   CHANG S, ZHOU J, MENG S, et al Clean coal technologies in China: current status and future perspectives[J]. Engineering, 2016, 2 (4): 447- 459
doi: 10.1016/J.ENG.2016.04.015
[6]   蔡润夏, 吕俊复, 凌文, 等 超(超)临界循环流化床锅炉技术的发展[J]. 中国电力, 2016, 49 (12): 1- 7
CAI Run-xia, LU Jun-fu, LING Wen, et al Progress of Supercritical and Ultra-Supercritical Circulating Fluidized Bed Boiler Technology[J]. Electric Power, 2016, 49 (12): 1- 7
[7]   聂立, 巩李明, 邓启刚, 等 东方660 MW高效超超临界CFB锅炉的设计[J]. 电站系统工程, 2019, 35 (4): 21- 24
NIE Li, GONG Li-ming, DENG Qi-gang, et al Design of Dongfang 660 MW highly-efficient ultra-supercritical CFB boiler[J]. Power System Engineering, 2019, 35 (4): 21- 24
[8]   张缦, 蔡润夏, 姜孝国, 等 660 MW高效超超临界双炉膛循环流化床锅炉的设计开发[J]. 动力工程学报, 2018, 38 (5): 341- 346
ZHANG Man, CAI Run-xia, JIANG Xiao-guo, et al Design and development of a 660 MW high efficiency ultra-supercritical double-furnace CFB boiler[J]. Journal of Chinese Society of Power Engineering, 2018, 38 (5): 341- 346
[9]   XIONG B, LU X, AMANO R S, et al Gas-solid flow in an integrated external heat exchanger for CFB boiler[J]. Powder Technology, 2010, 202 (1-3): 55- 61
doi: 10.1016/j.powtec.2010.04.006
[10]   张缦, 吴海波, 孙运凯, 等 大型循环流化床锅炉外置换热器运行特性分析[J]. 中国电机工程学报, 2012, 32 (14): 42- 48
ZHANG Man, WU Hai-bo, SUN Yu-kai, et al Operation characteristics of fluidized bed heat exchanger of large-scale circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2012, 32 (14): 42- 48
[11]   蔡润夏, 吕俊复, 张缦, 等 超超临界循环流化床锅炉流化床换热器热偏差形成的流动基础[J]. 锅炉技术, 2019, 50 (4): 34- 39
CAI Run-xia, LYU Jun-fu, ZHANG Man, et al Hydrodynamic mechanisms of non-uniform distribution of heat transfer in fluidized bed heat exchangers of ultra supercritical CFB boilers[J]. Boiler Technology, 2019, 50 (4): 34- 39
[12]   孙献斌 700°C超超临界循环流化床锅炉方案设计研究[J]. 中国电机工程学报, 2014, 34 (23): 3977- 3982
SUN Xian-bin Plan design and research of 700°C ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2014, 34 (23): 3977- 3982
[13]   聂立, 王鹏, 彭雷, 等 600 MW超临界循环流化床锅炉的设计[J]. 动力工程, 2008, 28 (5): 701- 706
NIE li, WANG Peng, PENG Lei, et al Design of 600 MW supercritical circulating fluidized bed boiler[J]. Power Engineering, 2008, 28 (5): 701- 706
[14]   牟晓哲, 宋国良, 孙运凯, 等 循环流化床外置换热器冷态实验研究[J]. 热能动力工程, 2012, 27 (5): 560- 565
MU Xiao-zhe, SONG Guo-liang, SUN Yun-kai, et al Cold-state experimental study of a CFB externally-installed heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27 (5): 560- 565
[15]   张文清, 孙思聪, 卢啸风 大型循环流化床锅炉外置式换热器运行特性的对比研究[J]. 热能动力工程, 2017, 32 (1): 97- 101
ZHANG Wen-qing, SUN Si-cong, LU Xiao-feng Comparative study on the external heat exchanger operating characteristics in large-scale circulating fluidized bed boiler[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (1): 97- 101
[16]   CAI R, ZHANG M, MO X, et al Operation characteristics of external heat exchangers in the 600 MW supercritical CFB boiler[J]. Fuel processing technology, 2018, 172 (4): 65- 71
[17]   郑兴胜, 徐鹏, 胡修奎, 等 600 MW超临界CFB锅炉高再外置换热器运行调整试验研究[J]. 东方电气评论, 2016, 30 (2): 23- 26
ZHENG Xing-sheng, XU Peng, HU Xiu-kui, et al Experimental research on adjustment of operation of high temperature external heat exchanger for the 600 MW super-critical CFB boiler[J]. Dongfang Electric Review, 2016, 30 (2): 23- 26
[18]   SONG G, LYU Q, XIAO F, et al Experimental research of heat transfer uniformity for fluidized bed heat exchangers in a 300 MW CFB boiler[J]. Applied Thermal Engineering, 2018, 130 (5): 938- 950
[19]   孙献斌, 胡昌华, 李星华, 等 600 MW超临界循环流化床锅炉外置床壁温特性分析[J]. 电力建设, 2014, 35 (4): 6- 9
SUN Xian-bin, HU Chang-hua, LI Xing-hua, et al Tube wall temperature characteristic of external heat exchanger in 600 MW supercritical CFB boiler[J]. Electric Power Construction, 2014, 35 (4): 6- 9
[20]   凌文, 吕俊复, 周托, 等 660 MW超超临界循环流化床锅炉研究开发进展[J]. 中国电机工程学报, 2019, 39 (9): 2515- 2524
LING Wen, LYU Jun-fu, ZHOU Tuo, et al Research and development progress of the 660 MW ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2019, 39 (9): 2515- 2524
[21]   WANG Q, LUO Z, FANG M, et al Development of a new external heat exchanger for a circulating fluidized bed boiler[J]. Chemical Engineering and Processing: Process Intensification, 2003, 42 (4): 327- 335
doi: 10.1016/S0255-2701(02)00054-5
[22]   王勤辉, 施正伦, 程乐鸣, 等 非机械阀控制外置换热器的试验研究[J]. 动力工程, 2001, 21 (4): 1324- 1330;
WANG Qin-hui, SHI Zheng-lun, CHENG Le-ming, et al A new concept of external heat exchanger for circulatingfluidized bed boiler[J]. Power Engineering, 2001, 21 (4): 1324- 1330;
[23]   杨磊. 循环流化床锅炉外置式换热器热态实验研究[D]. 重庆: 重庆大学, 2007: 59-60.
YANG Lei. CFBB external heat exchanger hot-state experimental study [D]. Chongqing: Chongqing University, 2007: 59-60.
[24]   YAO X, ZHANG Y, LU C, et al Investigation of the heat transfer intensification mechanism for a new fluidized catalyst cooler[J]. AIChE Journal, 2015, 61 (8): 2415- 2427
doi: 10.1002/aic.14841
[25]   PISTERS K, PRAKASH A Investigations of axial and radial variations of heat transfer coefficient in bubbling fluidized bed with fast response probe[J]. Powder Technology, 2011, 207 (1-3): 224- 231
doi: 10.1016/j.powtec.2010.11.003
[26]   TAOFEEQ H, AI-DAHHAN M Heat transfer and hydrodynamics in a gas-solid fluidized bed with vertical immersed internals[J]. International Journal of Heat and Mass Transfer, 2018, 122 (7): 229- 251
[27]   STEFANOVA A, BI H T, LIM J C, et al Local hydrodynamics and heat transfer in fluidized beds of different diameter[J]. Powder Technology, 2011, 212 (1): 57- 63
doi: 10.1016/j.powtec.2011.04.026
[28]   STEFANOVA A, BI X T, LIM C J, et al A probabilistic heat transfer model for turbulent fluidized beds[J]. Powder Technology, 2020, 365 (1): 163- 171
[29]   CAI R, ZHANG M, GE R, et al Experimental study on local heat transfer and hydrodynamics with single tube and tube bundles in an external heat exchanger[J]. Applied Thermal Engineering, 2019, 149 (25): 924- 938
[30]   LIM C N, GILBERTSON M A, HARRISONA J L Bubble distribution and behaviour in bubbling fluidised beds[J]. Chemical Engineering Science, 2007, 62 (1-2): 56- 69
doi: 10.1016/j.ces.2006.08.034
[31]   LI Y, FAN H, FAN X Identify of flow patterns in bubbling fluidization[J]. Chemical Engineering Science, 2014, 117 (27): 455- 464
[32]   RUDISULI M, SCHILDHAUER T J, BIOLLAZ S M A, et al Radial bubble distribution in a fluidized bed with vertical tubes[J]. Industrial and Engineering Chemistry Research, 2012, 51 (42): 13815- 13824
doi: 10.1021/ie3004418
[33]   HOFER G, SCHONY G, PROLL T Acting on hydrodynamics to improve the local bed-to-wall heat transfer in bubbling fluidized beds[J]. Chemical Engineering Research and Design, 2018, 134 (6): 309- 318
[34]   YAO X, ZHANG Y, LU C, et al CFD investigation of gas-solids flow in a new fluidized catalyst cooler[J]. Powder Technology, 2016, 304 (12): 108- 119
[35]   MCKAIN D, CLARK N, ATKINSON C, et al Correlating local tube surface heat transfer with bubble presence in a fluidized bed[J]. Powder technology, 1994, 79 (1): 69- 79
doi: 10.1016/0032-5910(93)02802-H
[1] Jun LIU,Quan-gong LI,Yi-han LIAO,Wei-shu WANG. Performance of incinerator-waste heat boiler and NOx emissions in solid waste incineration power plants[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1014-1021.
[2] Xiao-qiang XIE,Jian-guo YANG,Chao-yang ZHU,Chuan-huai LIU,Hong ZHAO,Zhi-hua WANG. Effect of bowl-shaped secondary air distribution on combustion efficiency and NOx mass concentration[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 220-227.
[3] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[4] YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, WANG Yue-lan, ZHENG Lin, YU Zhong, JI Cheng-jun. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1163-1172.
[5] HONG Qiao qiao, MA Shun, ZHAO Hui, WU Xue cheng. 4 t/h coal-fired industrial chain boiler model and simulation adjustment[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2312-2318.
[6] ZHOU Yong gang, LI Pei, AO Xiang, ZHAO Hong. High temperature corrosion inhibition for opposed firing boiler based on combustion distribution evenness[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1768-1775.
[7] GONG Bin, YU Chun-jiang, WANG Zhun, LUO Zhong-yang. Characteristic of deposits on different heating surfaces from a biomass-fired grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1578-1584.
[8] YOU Zhuo, WANG Zhi-hua, ZHOU Zhi-jun, HU Xin, ZHU Yan-qun, ZHOU Jun-hu, CEN Ke-fa. Numerical simulation of NOx emission from a 1 000 MW boiler retrofitted to oxy-fuel combustion[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2080-2086.
[9] YU Chun-jiang,WANG Zhun,GONG Bin,LUO Zhong-yang. Corrosion characteristics of biomass bolier steel in KCl contact condition[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2046-2052.
[10] WANG Xing-hao, WANG Zhi-hua, LIU Jing, XIANG Fei-peng,ZHOU Jun-hu, CEN Ke-fa. Reduction roasting and magnetic separation of oolitic hematite ore by coal combustion in fluidized bed[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 675-679.
[11] ZHONG Wei,YANG Zhi-qun,SONG Dong-gen,HU Ji-guang ,TONG Shui-guang. Hydrodynamic performance design of the radiation chamber of a waste-heat boiler for copper flash smelting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1970-1975.
[12] YANG Wen-chuang, YANG Wei-juan, ZHOU Zhi-jun, YUAN Wei-dong,. Influence of secondary air angle on flow field in down-fired furnace
determined by cold-flow modeling experiment
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 139-145.
[13] TIAN Chen, WANG Qin-hui, CHENG Le-ming, LUO Zhong-yang, NI Ming-jiang. Experimental investigation on local particle volume fractions
distribution in offset-exit circulating fluidized bed
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 577-583.
[14] ZHONG Wei, DING Sheng, SONG Dong-gen, JU Xia, TONG Shui-guang. Numerical simulation of flow and temperature fields in the radiation
chamber of a waste-heat boiler for copper flash smelting
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 321-326.
[15] HUANG Chen,CHENG Le-ming,ZHOU Xing-long,WU Chao-gang,ZHOU Qi, FANG Meng-xiang,. Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 2128-2132.