Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 1014-1021    DOI: 10.3785/j.issn.1008-973X.2020.05.020
Energy and Power Engineering     
Performance of incinerator-waste heat boiler and NOx emissions in solid waste incineration power plants
Jun LIU(),Quan-gong LI,Yi-han LIAO,Wei-shu WANG
School of Electic Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Download: HTML     PDF(747KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The flue gas composition on the outlet of economizer and the flue gas temperature in the furnace were tested in a waste incineration power plant with a waste disposal capacity of 500 t/d, in order to master the operation status of a newly built units and explore the influence of flue gas recirculation on the pollutant emission of a waste incineration power plant. The performance of the incinerator-waste heat boiler was experimentally studied, and the efficiency of the incinerator-waste heat boiler and the heat losses were quantitatively calculated. The influencing factors of NOx emissions were analyzed based on the test results. Results indicate that the largest proportion of the total heat loss is the exhaust heat loss under different loads, and the next is the heat loss of slag. The influence of flue gas recirculation on the efficiency of incinerator-waste heat boiler is small within the test range. The oxygen volume fraction in the flue gas and the flue gas recirculation have significant influence on NOx emissions. The NOx mass concentration on the outlet of the economizer increased from 209.54 mg/m3 to 307.30 mg/m3, that is an increase of 46.65%, when the oxygen volume fraction on the outlet of the economizer increased from 4.52% to 8.00%. The NOx mass concentration on the outlet of the economizer decreased from 209.54 mg/m3 to 126.15 mg/m3 when the flue gas recirculation valve was fully opened, compared with the shutdown of flue gas recirculation system.



Key wordssolid waste incineration      incinerator-waste heat boiler      NOx emissions      flue gas recirculation      performance test     
Received: 16 May 2019      Published: 05 May 2020
CLC:  TQ 028.8  
Cite this article:

Jun LIU,Quan-gong LI,Yi-han LIAO,Wei-shu WANG. Performance of incinerator-waste heat boiler and NOx emissions in solid waste incineration power plants. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1014-1021.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.020     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/1014


垃圾焚烧电厂焚烧炉-余热锅炉性能及NOx排放

为了掌握新建机组运行状况,探索烟气再循环对垃圾焚烧电厂污染物排放的影响,针对某垃圾处理量为500 t/d的垃圾焚烧电厂,现场测试省煤器出口烟气成分及炉内烟气温度,试验研究焚烧炉-余热锅炉性能,定量计算焚烧炉-余热锅炉效率及各项热损失,并根据试验测试结果,分析炉内NOx生成的影响因素. 结果表明:在不同负荷下,机组总热损失中排烟热损失所占比例最大,其次为炉渣热损失,在试验范围内,烟气再循环量对焚烧炉-余热锅炉效率影响较小;烟气中氧气的体积分数及烟气再循环对NOx排放影响显著,省煤器出口氧气的体积分数由4.52%增加到8.00%,NOx质量浓度由209.54 mg/m3升高到307.30 mg/m3,增加46.65%;与烟气再循环系统停运相比,当烟气再循环阀门全开时,省煤器出口NOx质量浓度由209.54 mg/m3降为126.15 mg/m3.


关键词: 垃圾焚烧,  焚烧炉-余热锅炉,  NOx排放,  烟气再循环,  性能试验 
Fig.1 System and flow diagram of waste incineration power generation
项目 参数
设计垃圾热值/(kJ?kg?1 6 699.00
烟气在>850 °C的条件下停留时间/s ≥2.00
焚烧残渣热灼减率/% ≤3.00
省煤器出口烟气温度/°C 190~220
焚烧炉-余热锅炉效率(100%MCR)/% 80.00
锅炉额定蒸发量(100%MCR)/(t?h?1 51.8
蒸汽压力/MPa 4.0
主蒸汽温度/°C 400
汽包工作压力/MPa 5.0
汽包工作温度/°C 266
给水温度/°C 130
Tab.1 Main design parameters of incinerator-waste heat boiler
Fig.2 System diagram of flue gas sampling and analysis
项目 mwaste/
(t?d?1
ρ(CO)/
(mg?m?3
qm/
(kg?s?1
θ1/
°C
θ2/
°C
θ3/
°C
θ850/
°C
t/s Qout/
MW
$Q_{{\rm{emi}}}^{{\rm{loss}}}$/
MW
$Q_{{\rm{slag}}}^{{\rm{loss}}}$/
MW
$Q_{{\rm{ash}}}^{{\rm{loss}}}$/
MW
$Q_{{\rm{rad}}}^{{\rm{loss}}}$/
MW
$Q_{{\rm{total}}}^{{\rm{loss}}}$/
MW
Lemi/
%
Lslag/
%
Lash/
%
Lrad/
%
η/
%
$\bar \eta $/
%
60%MCR 286.2 2.26 24.62 830 874 904 917 5.53 25.04 4.29 0.88 0.08 0.29 5.54 14.04 2.88 0.27 0.93 81.88 77.04
100%MCR 509.2 5.33 33.96 893 949 973 986 5.82 34.42 6.53 1.39 0.16 0.36 8.44 15.24 3.24 0.38 0.83 80.3 80.42
110%MCR 564.5 7.12 35.85 943 1 014 1 032 1 053 5.79 40.29 7.02 1.77 0.22 0.40 9.41 14.12 3.57 0.44 0.8 81.07 80.63
Tab.2 Test results of incinerator-waste heat boiler performance under different load conditions
项目 qm/(kg?s?1 θeco/°C Qout/MW $Q_{{\rm{emi}}}^{{\rm{loss}}}$/MW $Q_{{\rm{slag}}}^{{\rm{loss}}}$/MW $Q_{{\rm{ash}}}^{{\rm{loss}}}$/MW $Q_{{\rm{rad}}}^{{\rm{loss}}}$/MW $Q_{{\rm{total}}}^{{\rm{loss}}}$/MW Lemi/% Lslag/% Lash/% Lrad/% η/% $\bar \eta $/%
工况1 33.96 193 34.42 6.53 1.39 0.16 0.36 8.44 15.24 3.24 0.38 0.83 80.3 80.42
工况2 33.68 195 34.36 6.41 1.41 0.18 0.36 8.36 15.00 3.30 0.42 0.84 80.43 80.37
工况3 33.41 198 33.98 6.48 1.42 0.18 0.35 8.43 15.28 3.35 0.42 0.83 80.12 80.26
Tab.3 Effect of recirculating flue gas on efficiency of incinerator-waste heat boiler
项目 qVrec/(m3?h?1 qVurea/(L?h?1 φ(O2)/% ρ(CO)/(mg?m?3 φ(CO2)/% ρ(NOx)/(mg?m?3 θeco/°C
工况1 0 0 4.52 9.56 13.92 209.54 198
工况2 0 0 6.25 4.58 12.50 265.01 196
工况3 0 0 8.00 1.97 10.98 307.30 198
Tab.4 Test results of flue gas composition on outlet of economizer with different O2 volume fractions
项目 Z/% Vrec/(m3?h?1 Vurea/(L?h?1 φ(O2)/% ρ(CO)/(mg?m?3 φ(CO2)/% ρ(NOx)/(mg?m?3 θeco/°C
工况1 100 16 163.9 0 4.43 11.48 14.07 126.15 193
工况2 50 9 345.7 0 4.39 11.30 14.13 178.90 195
工况3 0 0 0 4.52 9.56 13.92 209.54 198
Tab.5 Test results of flue gas composition on outlet of economizer with different volume flow rates of recirculating flue gas
[1]   MA W C, FANG Y H, CHEN D M, et al Volatilization and leaching Behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace[J]. Fuel, 2017, 210: 145- 153
doi: 10.1016/j.fuel.2017.07.091
[2]   孙立, 吴新, 刘道洁, 等 基于硅基的垃圾焚烧飞灰中温热处理重金属稳固化实验[J]. 化工进展, 2017, 36 (9): 3514- 3522
SUN Li, WU Xin, LIU Dao-jie, et al Stabilization of heavy metals in municipal solid waste incineration fly ash using thermal treatment with silica-based material[J]. Chemical Industry and Engineering Progress, 2017, 36 (9): 3514- 3522
[3]   王学涛, 金保生, 仲兆平 垃圾焚烧炉飞灰熔融处理前后的重金属分布特性[J]. 燃烧科学与技术, 2006, 12 (1): 81- 85
WANG Xue-tao, JIN Bao-sheng, ZHONG Zhao-ping Partition of heavy metals for fly ashes from MSW incinerator before and after melting treatment[J]. Journal of Combustion Science and Technology, 2006, 12 (1): 81- 85
doi: 10.3321/j.issn:1006-8740.2006.01.017
[4]   魏春梅, 刘清才 飞灰熔融分离过程中重金属Cu的迁移分布规律[J]. 西华大学学报, 2014, 33 (2): 80- 83
WEI Chun-mei, LIU Qing-cai Study on the behaviour of Cu during melting separation process for MSW incineration fly ash[J]. Journal of Xihua University: Natural Science, 2014, 33 (2): 80- 83
[5]   OKADA T, TOMIKAWA H Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste[J]. Waste Management, 2013, 33 (3): 605- 614
doi: 10.1016/j.wasman.2012.08.013
[6]   王雨婷, 汤明慧, 宗达, 等 炉排垃圾焚烧飞灰二级逆流水洗特性[J]. 浙江大学学报: 工学版, 2019, 53 (5): 1- 7
WANG Yu-ting, TANG Ming-hui, ZONG Da, et al Two-stage countercurrent water-washing characteristics of grate furnace MSWI fly ash[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (5): 1- 7
[7]   李大中, 唐影 垃圾焚烧发电污染物排放过程建模与优化[J]. 可再生能源, 2015, 33 (1): 118- 123
LI Da-zhong, TANG Ying Modeling and optimization of pollutants emission of waste incineration[J]. Renewable Energy Resources, 2015, 33 (1): 118- 123
[8]   李文瀚, 马增益, 杨恩权, 等 循环流化床垃圾焚烧系统电除尘飞灰和布袋飞灰特性研究[J]. 中国电机工程学报, 2019, 39 (5): 1397- 1405
LI Wen-han, MA Zeng-yi, YANG En-quan, et al Characteristics of electrostatic precipitator ash and bag filter ash from a circulating fluidized bed municipal solid waste incinerator[J]. Proceedings of the CSEE, 2019, 39 (5): 1397- 1405
[9]   许崇涛, 曹阳, 武桐, 等 城市生活垃圾焚烧过程中NOx的生成与控制研究进展 [J]. 工业锅炉, 2014, 4: 1- 6
XU Chong-tao, CAO Yang, WU Tong, et al Research progress of NOx formation and control from MSW incineration process [J]. Industrial Boiler, 2014, 4: 1- 6
doi: 10.3969/j.issn.1004-8774.2014.04.001
[10]   罗阿群, 刘少光, 林文松, 等 二噁英生成机理及减排方法研究进展[J]. 化工进展, 2016, 35 (3): 910- 916
LUO A-qun, LIU Shao-guang, LIN Wen-song Progress of formation mechanisms and emission reduction methods of PCDD/Fs[J]. Chemical Industry and Engineering Progress, 2016, 35 (3): 910- 916
[11]   SUVARNAKUTA P, PATUMSAWAD S, KERDSUWAN S Experimental study on preheated air and flue gas recirculation in solid waste incineration[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32 (14): 1362- 1377
doi: 10.1080/15567030903077519
[12]   徐颖, 陈玉, 冯岳阳 重金属螯合剂处理垃圾焚烧飞灰的稳定化技术[J]. 化工学报, 2013, 64 (5): 1833- 1839
XU Ying, CHEN Yu, FENG Yue-yang Stabilization technology in treating municipal solid waste incineration[J]. Journal of Chemical Industry and Engineering (China), 2013, 64 (5): 1833- 1839
doi: 10.3969/j.issn.0438-1157.2013.05.045
[13]   陈波, 程治良, 全学军, 等 电絮凝法预处理垃圾焚烧发电厂渗滤液及其过程优化[J]. 化工进展, 2011, 30 (Suppl.1): 902- 908
CHEN Bo, CHENG Zhi-liang, QUAN Xue-jun, et al Pretreatment of leachate from municipal solid waste incinerator plant by electrocoagulation and process optimization[J]. Chemical Industry and Engineering Progress, 2011, 30 (Suppl.1): 902- 908
[14]   郭娟. 垃圾焚烧发电厂烟气系统优化研究[D]. 北京: 清华大学, 2014.
GUO Juan. Research on system optimization of the flue gas in waste incineration power plant [D]. Beiing: Tsinghua University, 2014.
[15]   尹航. 掺煤量及回灰量对垃圾CFB锅炉运行的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YIN Hang. The influence of coal blending and return ash content on operation of the CFB boiler [D]. Harbin: Harbin Institute of Technology, 2016.
[16]   FU Z, ZHANG S H, LI X P, et al MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations[J]. Waste Management, 2015, 38: 149- 56
[17]   王克, 张世红, 付哲, 等 垃圾炉排焚烧炉富氧焚烧改造数值模拟研究[J]. 太阳能学报, 2016, 37 (9): 2257- 2264
WANG Ke, ZHANG Shi-hong, FU Zhe, et al Numerical simulation research for the oxyfuel combustion renovation of a MSW grate incineration[J]. ACTA Energiae Solaris Sinica, 2016, 37 (9): 2257- 2264
doi: 10.3969/j.issn.0254-0096.2016.09.013
[18]   沈锐林. SNCR脱硝对垃圾焚烧发电锅炉效率的影响[D]. 广州: 华南理工大学, 2015.
SHEN Rui-lin. The effect of SNCR technology on waste incineration power boiler efficiency [D]. Guangzhou: South China University of Technology, 2015.
[19]   XIA Z, LI J, WU T, et al CFD simulation of MSW combustion and SNCR in a commercial incinerator[J]. Waste Management, 2014, 34 (9): 1609- 1618
doi: 10.1016/j.wasman.2014.04.015
[20]   曹玉春. 流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D]. 杭州: 浙江大学, 2005.
CAO Yu-chun. Numerical simulation of flow and combustion pollutants formation in MSW fluidized bed incinerator [D]. Hangzhou: Zhejiang university, 2005.
[21]   国家环境保护部科技标准司. 生活垃圾焚烧污染控制标准: GB 18485-2014 [S]. 北京: 中国标准出版社, 2014.
[22]   中华人民共和国住房和城乡建设部. 生活垃圾焚烧灰渣取样制样与检测: CJ/T531-2018 [S]. 北京: 中国标准出版社, 2018.
[23]   王智微, 刘廷钰, 刘超飞. 一种垃圾焚烧炉炉内烟气850 °C条件下停留时间的实时测量方法: 106770456B [P]. 2017-02-17.
[24]   FDBR working group. Acceptance testing of waste incineration plants with grate firing systems: FDBR RL 7-2013 [S]. Dusseldorf: Fachverband Dampfkessel-, Beh?lter- und Rohrleitungsbau e.V, 2013.
[25]   王亥, 郭铁生, 冯树元, 等 流化床垃圾焚烧炉中NOx的排放特性试验研究 [J]. 工业锅炉, 2005, (1): 17- 19
WANG He, GUO Tie-sheng, FENG Shu-yuan, et al NOx emission in fluidized bed MSW incinerator [J]. Industrial Boiler, 2005, (1): 17- 19
doi: 10.3969/j.issn.1004-8774.2005.01.002
[26]   宋少鹏, 卓建坤, 李娜, 等 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36 (24): 6849- 6858
SONG Shao-peng, ZHUO Jian-kun, LI Na, et al Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation [J]. Proceedings of the CSEE, 2016, 36 (24): 6849- 6858
[27]   BALTASAR J, CARVALHO M G, COELHO P, et al Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling[J]. Fuel, 1997, 76 (10): 919- 929
doi: 10.1016/S0016-2361(97)00093-8
[28]   KIM H K, KIM Y, LEE S M, et al NO reduction in 0.03~0.2 MW oxy-fuel combustor using flue gas recirculation technology[J]. Proceedings of the Combustion Institute, 2007, 31 (2): 3377- 3384
doi: 10.1016/j.proci.2006.08.083
[29]   CHO E S, CHUNG S H Characteristics of NOx emission with flue gas dilution in air and fuel sides [J]. KSME International Journal, 2004, 18 (12): 2303- 2309
doi: 10.1007/BF02990235
[30]   YU B, LEE S, LEE C E Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation [J]. Energy, 2015, 91: 119- 127
doi: 10.1016/j.energy.2015.08.023
[31]   王志宁, 杨协和, 张扬, 等 燃气锅炉中NO2的生成规律研究 [J]. 化工学报, 2019, 70 (8): 3132- 3141
WANG Zhi-ning, YANG Xie-he, ZHANG Yang, et al NO2 formation in natural gas-fired boilers [J]. Journal of Chemical Industry and Engineering (China), 2019, 70 (8): 3132- 3141
[32]   栾积毅, 高建民, 武雪梅, 等 链条炉分区段烟气再循环对锅炉运行及NOx排放特性影响的工业试验 [J]. 热能动力工程, 2017, 32 (10): 90- 94
LUAN Ji-yi, GAO Jian-min, WU Xue-mei, et al Study of the industrial experiment of the influence of the flue gases recycled into sections in a chain grate boiler on the operation and NOx emissions characteristics of the boiler [J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (10): 90- 94
[33]   曾强, 刘汉周, 阎良 烟气再循环对天然气非预混燃烧NOx排放特性的影响 [J]. 燃烧科学与技术, 2018, 24 (4): 369- 375
ZENG Qiang, LIU Han-zhou, YAN Liang Effect of flue gas recirculation on NOx emission characteristics of natural gas non-premixed combustion [J]. Journal of Combustion Science and Technology, 2018, 24 (4): 369- 375
[1] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[2] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.