Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1147-1155    DOI: 10.3785/j.issn.1008-973X.2020.06.011
Computer Technology     
Urban traffic flow prediction algorithm based on graph convolutional neural networks
Xu YAN(),Xiao-liang FAN*(),Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN
School of Informatics, Xiamen University, Xiamen 361000, China
Download: HTML     PDF(916KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved spatio-temporal graph convolutional networks traffic prediction algorithm, named free-flow reachable matrix-based spatio-temporal graph convolutional networks (FAST-GCN), was proposed, in order to predict real-time traffic flows accurately and improve the sensing and prediction of citywide traffic situation. The characteristics of urban complex road network structure were expressed effectively by the graph convolutional neural network, and the spatio-temporal dependency in complex road networks was explored by introducing free-flow reachable matrices. Thus the accuracy of traffic situation prediction was improved. First, preprocess traffic speeds and sensors location data. Second, with the existing spatio-temporal graph convolutional networks, the graph convolution module based on free flow reachable matrix was integrated to effectively capture the unique spatial characteristics of the urban traffic road networks. Finally, the prediction results were generated through a fully connected output layer. The proposed model was evaluated on a real-world traffic dataset PeMS. The experimental results show that this model could capture physical characteristics of road network and spatio-temporal dependency, and outperform the baselines such as spatio-temporal graph convolutional networks (STGCN), and the prediction accuracy in 45 minutes was improved by up to 5.656%. In addition, compared with baselines, the proposed model can adapt to traffic flow prediction in large-scale road networks and has superior scalability.



Key wordstraffic prediction      deep learning      graph convolution neural network      spatio-temporal dependency      free-flow reachable matrix     
Received: 03 January 2020      Published: 06 July 2020
CLC:  TP 399  
Corresponding Authors: Xiao-liang FAN     E-mail: yanxu97@stu.xmu.edu.cn;fanxiaoliang@xmu.edu.cn
Cite this article:

Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1147


基于图卷积神经网络的城市交通态势预测算法

为了实时准确地预测城市交通流量,提高城市交通态势感知和预测准确度,提出一种改进的时空图卷积深度神经网络算法:基于自由流动可达矩阵的时空图卷积深度神经网络(FAST-GCN). 利用图卷积神经网络有效表达城市复杂路网的结构特性,引入自由流动可达矩阵来挖掘复杂路网的时空依赖性,从而提高交通态势预测准确度;对交通流速及站点地理位置数据进行数据预处理;在现有的时空图卷积深度神经网络算法的基础上,增加基于自由流动可达矩阵的图卷积模块,以有效挖掘城市交通路网的独特空间特征;通过一个全连接的输出层输出交通流预测结果;在真实世界数据集PeMS上对算法效果进行验证. 结果表明,采用提出的FAST-GCN算法能够有效获取交通路网独特的物理特性,从而捕获交通数据的时空依赖性,优于时空图卷积(STGCN)等基线算法,其在45 min的预测准确率最好可提高5.656%;相比基线模型,所提算法能够适应大规模路网的交通流预测,且具有可扩展性.


关键词: 交通流预测,  深度学习,  图卷积神经网络,  时空依赖性,  自由流动可达矩阵 
模型 定义公式 参数数量 时间复杂度
FAST-GC ${ {{W} }_{ {g^m } } } \odot { {{F} }^m }$ ${N^2}$ $O({n^2})$
SGC ${{U}}\vartheta ({{\varLambda }}){{{U}}^{\rm{T}} }$ N $O({n^2})$
LSGC $\displaystyle\sum\nolimits_0^{ K - 1} { {\theta _k }{T_k }({{\varLambda } })}$ K $O({n^2})$
Tab.1 Character comparison between FAST-GC,SGC and LSGC
Fig.1 Overall framework of free-flow reachable matrix-based spatio-temporal graph convolutional networks (FAST-GCN) algorithm
Fig.2 MAE comparison of FAST-GC with different orders based on data on weekends of PEMSD7(S)
Fig.3 Training efficiency comparison of FAST-GC with different orders based on data on weekends of PEMSD7(S)
算法 MAE(15/30/45 min) MAPE(15/30/45 min) RMSE(15/30/45 min)
PeMSD7(S) PeMSD7(L) PeMSD7(S) PeMSD7(L) PeMSD7(S) PeMSD7(L)
ARIMA 3.635/4.069/4.462 3.398/3.793/4.147 9.486/10.438/11.302 8.703/9.553/10.338 8.594/9.158/9.704 8.133/8.632/9.131
SVR 4.026/4.628/5.090 3.830/4.433/4.864 12.373/13.992/15.193 11.873/13.272/14.264 8.605/9.388/10.007 8.344/9.142/9.709
CNN 3.256/3.721/3.876 3.292/3.417/3.436 7.995/9.350/10.084 8.182/8.652/8.814 5.618/6.524/6.858 5.928/6.254/6.294
LSTM 3.091/3.240/3.383 3.202/3.238/3.289 7.510/7.925/8.315 8.037/8.132/8.258 5.742/6.124/6.473 6.088/6.171/6.283
STGCN 1.878/2.564/3.052 1.742/2.434/2.953 4.359/6.233/7.560 4.095/5.842/7.043 3.839/5.440/6.454 3.669/5.293/6.410
FFR-STGCN 1.842/2.574/3.094 1.745/2.387/2.850 4.306/6.279/7.731 4.098/5.828/6.999 3.780/5.391/6.460 3.631/5.130/6.092
Tab.2 Traffic prediction performance comparison of different approaches for model training based on weekdays data of PeMSD7(S) and PeMSD7(L)
算法 MAE(15/30/45 min) MAPE(15/30/45 min) RMSE(15/30/45 min)
PeMSD7(L) PeMSD7(S) PeMSD7(L) PeMSD7(L) PeMSD7(S) PeMSD7(L)
ARIMA 2.511/2.778/3.019 2.124/2.350/2.546 5.773/6.285/6.761 4.824/5.259/5.646 6.498/6.861/7.212 5.768/6.075/6.361
SVR 4.157/4.562/4.825 3.536/3.890/4.135 11.289/12.053/12.542 8.832/9.442/9.862 8.984/9.395/9.662 7.829/8.239/8.516
CNN 3.502/3.863/3.976 2.863/2.930/3.093 8.040/9.133/9.663 6.652/6.807/7.295 6.506/7.391/7.694 5.727/5.887/6.216
LSTM 3.254/3.359/3.457 2.743/2.753/2.768 7.522/7.794/8.036 6.373/6.417/6.478 6.460/6.725/6.958 5.854/5.900/5.960
STGCN 1.530/2.122/2.527 1.322/1.759/2.057 3.185/4.577/5.486 2.896/4.077/4.787 3.249/4.691/5.569 3.006/4.271/5.011
FFR-STGCN 1.486/2.045/2.428 1.310/1.741/2.029 3.108/4.469/5.339 2.855/4.119/4.919 3.167/4.484/5.254 2.992/4.214/4.891
Tab.3 Traffic prediction performance comparison of different approaches for model training based on weekends data of PeMSD7(S) and PeMSD7(L)
[1]   刘静, 关伟 交通流预测方法综述[J]. 公路交通科技, 2004, 21 (3): 82- 85
LIU Jing, GUAN Wei Overview of traffic flow prediction methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (3): 82- 85
doi: 10.3969/j.issn.1002-0268.2004.03.022
[2]   李德仁, 姚远, 邵振峰 智慧城市中的大数据[J]. 武汉大学学报: 信息科学版, 2014, 58 (6): 631- 640
LI De-ren, YAO Yuan, SHAO Zhen-feng Big data in smart cities[J]. Journal of Wuhan University: Information Science Edition, 2014, 58 (6): 631- 640
[3]   陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究: 跨学科视野中的工程, 2014, 6 (1): 6- 19
LU Hua-pu, LI Rui-min Development status and trends of urban intelligent transportation systems[J]. Engineering Research: Engineering in Interdisciplinary Perspectives, 2014, 6 (1): 6- 19
[4]   HAJIMOLAHOSEINI H, AMIRFATTAHI R, SOLTANIAN-ZADEH H Robust vehicle tracking algorithm for nighttime videos captured by fixed cameras in highly reflective environments[J]. IET Computer Vision, 2014, 8 (6): 535- 544
[5]   SEN R, MAURYA A, RAMAN B, et al. Kyun queue: a sensor network system to monitor road traffic queues [C] // Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. Toronto: ACM, 2012: 127-140.
[6]   CHEN C, PETTY K, SKABARDONIS A, et al Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record, 2001, 1748 (1): 96- 102
doi: 10.3141/1748-12
[7]   VLAHOGIANNI E I. Computational intelligence and optimization for transportation big data: challenges and opportunities [M] // Engineering and Applied Sciences Optimization. Cham: Springer, 2015: 107-128.
[8]   MAKRIDAKIS S, HIBON M ARMA models and the Box–Jenkins methodology[J]. Journal of Forecasting, 1997, 16 (3): 147- 163
[9]   HAMED M M, Al-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
[10]   SMOLA A J, SCHOLKOPF B A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222
[11]   HUANG W, SONG G, HONG H, et al Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2191- 2201
doi: 10.1109/TITS.2014.2311123
[12]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[13]   CHO K, VAN MERRIENBOER B, GULVEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv Preprint, arXiv: 1406.1078, 2014.
[14]   CUI Z, KE R, WANG Y. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction [J]. arXiv Preprint, arXiv: 1801.02143, 2018.
[15]   ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction [C] // Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017.
[16]   LECUN Y, BOSER B, DENKER J S, et al Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1 (4): 541- 551
[17]   MA X L, DAI Z, HE Z B, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
[18]   SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80
[19]   ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: A review of methods and applications [J]. arXiv Preprint, arXiv: 1812.08434, 2018.
[20]   LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [J]. arXiv Preprint, arXiv: 1707.01926, 2017.
[21]   YU, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting [J]. arXiv Preprint. arXiv: 1709.04875, 2017.
[22]   CUI Z, HENRICKSON K, KE R, et al Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,
[23]   GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 922-929.
[24]   ZHANG N, GUAN X, CAO J, et al. A hybrid traffic speed forecasting approach integrating wavelet transform and motif-based graph convolutional recurrent neural network [J]. arXiv Preprint. arXiv: 1904.06656, 2019.
[25]   SUN J, ZHANG J, LI Q, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks [J]. arXiv Preprint. arXiv: 1903.07789, 2019.
[26]   CHEN C, LI K, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 485-492.
[27]   ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction [J]. arXiv Preprint, arXiv: 1911.08415, 2019.
[28]   SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Hong-li WANG,Bin GUO,Si-cong LIU,Jia-qi LIU,Yun-gang WU,Zhi-wen YU. End context-adaptative deep sensing model with edge-end collaboration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 626-638.
[3] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[4] Li-feng XU,Hai-fan HUANG,Wei-long DING,Yu-lei FAN. Detection of small fruit target based on improved DenseNet[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 377-385.
[5] Hao-can XU,Ji-tuo LI,Guo-dong LU. Reconstruction of three-dimensional human bodies from single image by LeNet-5[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 153-161.
[6] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[7] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[8] Pu ZHENG,Hong-yang BAI,Wei LI,Hong-wei GUO. Small target detection algorithm in complex background[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1777-1784.
[9] Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
[10] Tao MING,Dan WANG,Ji-chang GUO,Qiang LI. Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1289-1297.
[11] Zhou-fei WANG,Wei-na YUAN. Channel estimation and detection method for multicarrier system based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 732-738.
[12] Bing YANG,Wen-bo MO,Jin-liang YAO. 3D palmprint recognition by using local features and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 540-545.
[13] Yan-jia HONG,Tie-bao MENG,Hao-jiang LI,Li-zhi LIU,Li LI,Shuo-yu XU,Sheng-wen GUO. Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 566-573.
[14] Zi-yu JIA,You-fang LIN,Hong-jun ZHANG,Jing WANG. Sleep stage classification model based ondeep convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1899-1905.
[15] Wan-liang WANG,Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG. Image enhancement algorithm with convolutional auto-encoder network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1728-1740.